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Abstract

This paper describes how a new class of composite sandwich plates
is implemented to control vibration of the bending and torsional modes using
built-in Active Constrained Layer Damping (ACLD). The paper also gives an
insight into the fundamentals governing the dynamics and active/passive
control of smart composite sandwiched plate structures to use as the potential
basic building block of structures where effective vibration damping is
essential to their successful operation.

To improve predictions of the dynamics and controlled vibration of the
composite sandwiched plate/ACLD, a powerful assumed displacement field for
the finite element modeling is introduced. This assumed displacement field
differs from the classical laminated theory and offers a definite advantage in
finite element modeling as it gives a displacement distribution along the whole
thickness of the laminates and requires fewer degrees of freedoms to
represent the kinematical relationships for viscoelastic layers with
piezoelectric layers in ACLD. Also, the predictions of the finite element model
using this assumed displacement field have been validated by comparing of
modal frequencies and damping loss factors with experiment and are found to
be in close agreement.
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Passive and active layer damping

(a)-Passive: unconstrained
(b)-Passive: constrained
(c)-Active: constrained
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OR LOSS FACTOR
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Interaction processes between the
electrical, mechanical, and thermal system

[Ikeda Takuro; Fundamental of Piezoelectricity,1990]



Active constrained layer damping
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Operating principle of sandwiched
plate/ACLD system.
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Theoretical Development
(Formulation)

Displacement Field
Displacement-Strain
Stress-Strain

Sensor & Actuator Equation

Equation of Motion



Schematic drawing of six-layer cantilever
plate/ACLD system
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Displacement field
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where the functions of the thicknessy,(z and the in-plane
coordinate f, (x,y,t) and f, (x,y,t) are defined as follows:
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where the a, 's denotes adjustment coefficients which will be
determined later. Physically, a, j]—"x" and a, %" define the slopes of
the i th layer due to bending in the x and y directions, respectively



Displacement-Strain Relations
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Stress-Strain Relation
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Sensor & Actuator Equation
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Equation of Motion & Eigenvalue Analysis
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where w™? are complex eigenval ues.
The nth eigenvalue is written as follows:

w,* =w,’(L+ih,)



Experimental setup for composite
sandwiched plate/ACLD
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Response to random excitations
for bending control
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Response to random excitations
for torsion control
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Comparison between theory &
experiments for first bending mode
with different control gains
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Comparison between theory &
experiments for second bending mode
with different control gains
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Comparison between theory &
experiments for torsional mode
with different control gains
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summary

Introduced a a new class of composite sandwiched plates
Developed the theoretical analysis of a composite plate/ACLD
Theoretical Analysis was validated experimentally

The ACLD is found to be effective in controlling the vibration
of the plates



