STRUCTURAL ANALYSIS OF INFLATED MEMBRANES WITH APPLICATIONS TO LARGE SCIENTIFIC BALLOONS

Dr. Frank E. Baginski*
Department of Mathematics
The George Washington University
Washington, DC 20052
baginski@gwu.edu

Dr. Willi W. Schur
Physical Sciences Laboratory
New Mexico State University
Field Office: NASA-GSFC-WFF
Wallops Island, VA 23337
willi.w.schur.1@gsfc.nasa.gov

Innovative Solutions to Challenging Problems
FEMCI Workshop 2002
NASA Goddard Space Flight Center
Greenbelt, MD 22-23 May 2002

*Supported by NASA Award NAG5-5353

Overview

1. The balloon problem
2. Mathematical model for the analysis of partially inflated strained balloons
3. Analysis of pumpkin balloon

The Balloon Problem: Design and Analysis

- Design - Determine the shape of a balloon to carry a payload of weight L at a constant altitude.
- Typically, assume a statically determinate shape (consider balloon system weight and hydrostatic pressure).
- Actual balloon is constructed from long tapered flat sheets of thin film that are sealed edge-to-edge. Load tendons are attached along each seam.
- Analysis - Estimate film stresses.
- Model the balloon as an elastic membrane
- Include elastic reinforcing load tendons
- Consider launch, ascent, and float configurations.
- Mathematical model for the analysis of strained/partially inflated balloons supported by NASA Awards: NAG5-697, 5292, 5353.

Partially Inflated Balloons (same loading)

Partially Inflated Balloon (Single Gore)

Partially Inflated Balloon with Lobes

Design Related Considerations

Natural-Shape Equations ($\sigma_{c}=0$)

Axisymmetric membrane theory:
UMN, 1950s; further balloon development by J. Smalley, 1960-70s.

$$
\overrightarrow{0}=\frac{\partial}{\partial s}\left(r \sigma_{m} \mathbf{t}\right)-\sigma_{c} \mathbf{e}_{1}(\phi)+r \mathbf{f}
$$

$T(s)=2 \pi r(s) \sigma_{m}(s)$ - total meridional tension
\mathbf{f} - $\underbrace{\text { hydrostatic pressure }}$ and film/tendon weight

$$
p=b z+p_{0}
$$

Natural-Shape Balloons
 Zero Pressure and Super-Pressure Designs

- Zero-pressure balloons ($p_{0}=0$).

Typical missions are several days.
Open at base and need ballast to maintain constant altitude.

- Super-pressure balloon ($p_{0} \gg b z_{\max }>0$).

Add sufficient pressure so that day/night volume changes are reduced.

Super-Pressure Natural-Shape Balloon

A developable (ruled) surface
"Manufactured" design

- While the natural-shape design is axisymmetric, manufactured design consists of piecewise ruled surfaces.
- ZP-balloons can handle the film stresses that are normally encountered.
- With a natural-shape superpressure design, available thin films are not strong enough to contain the pressure, or too heavy, or too expensive.
- Solution: A pumpkin shape with very strong tendons.

The Pumpkin Balloon

- Curvature in the hoop direction transfers load from film to the tendons.
- Increased tendon stiffness can be achived by tendon shortening
(there is a film/tendon mismatch!).

Background on the Pumpkin Balloon

- J. Smalley coined the term pumpkin balloon. Extensibility of the film is used to achieve the pumpkin gore shape (early 1970s).
- CNES built several small pumpkin balloons, cutting half-gore panels with extra material (mid-late 1970s)
- Sewing techniques to gather material at gore seams
(N. Yajima, Japan, 1998, see Adv. in Space Res., 2000).
- NASA/ULDB - structural lack-of-fit (shorten tendons) + material properties (W. Schur, PSL/WFF, 1998, see AIAA-99-1526).
- There are several versions of the pumpkin balloon. We will analyze a NASA ULDB pumpkin design flown in 2001.

Strain Analysis

The Natural (unstrained) State of a Complete Balloon

$n_{g}=290$ for the ULDB we consider here.

Observations and EM-Model Assumptions

- Linear stress-strain constitutive law
- Isotropic material (E-Youngs modulus, v-Poisson's ratio)
- Constant strain model $\left(T \in S_{R e f} \longleftrightarrow \mathcal{T} \in \mathcal{S}\right)$
- Wrinkling via energy relaxation (Pipkin) - facets are taut, slack, wrinkled
- Energy relaxation allows a tension field solution
- Folds can be used to describe distribution of excess material.
- Load tendons behave like sticky linearly elastic strings
- Shapes are characterized by large deformations but small strains.
- Hydrostatic pressure is shape dependent

Variational Principle for a Strained Balloon

	Problem ${ }^{\star}$	
	For $\mathcal{S} \in \mathcal{C}$,	
	Minimize:	$E_{T}(\mathcal{S})=E_{P}+E_{f}+E_{t}+S_{t}+S_{f}$
	Subject to:	$V=V_{0}$
S		
\mathcal{S}	balloon shape	
E_{T}	set of allowable shapes	
V	Total energy	
E_{P}	Volume	
E_{f}	hydrostatic pressure potential	
E_{t}	gravitational potential energy due to film weight	
S_{t}	strain energy of tendons	
S_{f}	strain energy of film	

Problem * is discretized and solved by EMsolver - developed for balloon applications, written in Matlab (uses fmincon - find minimum of a nonlinear multivariable function with linear and/or nonlinear constraints).
Aspects of EM-model have been implemented in Ken Brakke's Surface Evolver.

Energy Terms

Hydrostatic Pressure: $E_{P}=-\int_{\mathcal{V}} p d V=-\int_{S}\left(\frac{1}{2} b z^{2}+p_{0} z\right) \vec{k} \cdot d \vec{S}$,
Film Weight: $E_{f}=\int_{S} w_{f} z d A$
Tendon Weight: $E_{t}=\sum_{i=1}^{n_{s}} \int_{0}^{\ell_{d}} w_{t}^{i} z d s$
Tendon Strain: $S_{t}=\sum_{i=1}^{n_{s}} \int_{0}^{\ell_{d}} W_{c}^{*}\left(\dot{\gamma}_{i}\right) d s, \quad W_{c}\left(\dot{\gamma}_{i}\right)=\frac{1}{8} K_{t}\left(\left|\dot{\gamma}_{i}\right|^{2}-1\right)$.
Film Strain: $S_{f}=\int_{\Omega} W_{f}(\mathbf{G}) d A, \quad W_{f}(\mathbf{G})=\frac{1}{2} \mathbf{S}: \mathbf{G}$;
Strains: $\mathbf{G}=\frac{1}{2}(\mathbf{C}-\mathbf{I})$ - Green, $\mathbf{C}=\mathbf{F}^{T} \mathbf{F}$ - Cauchy; \mathbf{F} - Def. Grad.
Second Piola-Kirchoff stress tensor

$$
\mathbf{S}(\mathbf{G})=\frac{t E}{1-v^{2}}\left(\mathbf{G}+v \operatorname{Cof}\left(\mathbf{G}^{T}\right)\right) .
$$

Fine wrinkling: replace W_{f} by its relaxation W_{f}^{*}, allowing a Tension Field

Energy Relaxation \Longrightarrow Tension Field

In Pipkin's approach decompose M into three disjoint regions:
S - Slack region: Cauchy-Green strains are both negative, $\delta_{1}<0, \delta_{2}<0$;
T-Tense region: both principal stress resultants are positive, $\mu_{1}>0, \mu_{2}>0$;
U - Wrinkled region $(\mathrm{U}=\mathrm{M} \backslash \mathrm{S} \cup \mathrm{T})$.

$$
\begin{gathered}
\text { Classify each } T_{l} \in \Omega \\
W_{f}^{*}\left(\delta_{1}, \delta_{2} ; t, \nu, E\right)=\left\{\begin{array}{l}
0, \delta_{1}<0 \text { and } \delta_{2}<0 \\
\frac{1}{2} t E \delta_{2}^{2}, \mu_{1} \leq 0 \text { and } \delta_{2} \geq 0 \\
\frac{1}{2} t E \delta_{1}^{2}, \mu_{2} \leq 0 \text { and } \delta_{1} \geq 0 \\
\frac{t E}{2\left(1-v^{2}\right)}\left(\delta_{1}^{2}+\delta_{2}^{2}+2 v \delta_{1} \delta_{2}\right) \\
\mu_{1} \geq 0 \text { and } \mu_{2} \geq 0
\end{array}\right.
\end{gathered}
$$

*See FB and Collier, AIAA J, Vol 39, No. 9, Sept 2001, 1662-1672.

Principal Stresses: Superpresure Natural vs. Pumpkin

Stress Analysis Summary

$t=38 \mu \mathrm{~m}$ (1.5 mil)	Max Stress (stress resultant)	
Tendon	Slack 2.9\%	Shorten 2.0\%
Meridional Natural Hoop	$78 \mathrm{MPa}(17 \mathrm{lbf} / \mathrm{in})$ $78 \mathrm{MPa}(17 \mathrm{lbf} / \mathrm{in})$	0 MPa ($0 \mathrm{lbf} / \mathrm{in}$) 5.25 MPa (1.41 lbf/in)
Meridional Pumpkin Hoop	$28 \mathrm{MPa}(6.09 \mathrm{lbf} / \mathrm{in})$ $40 \mathrm{MPa}(8.70 \mathrm{lbf} / \mathrm{in})$	0 MPa (0 lbf/in) 4.25 MPa (0.92 lbf/in)

Conclusions

- Pumpkin design (shape + tendon shortening) offers a significant reduction in maximum stresses compared to natural-shape superpressure design.
- The variational formulation and optimization based solution process of EMsolver provides an analytical tool that is readily adaptable to other membrane and gossamer structures.

Appendices

- (2002) Comparison of EMsolver predictions with measurements.
- Benchmark comparisons with ABAQUS
- (1998) Zero pressure natural shape;

EMsolver with virtual fold.

- (2001 -) Spherical balloon with rope constraints;

EMsolver with strain energy relaxation.

Compare EMsolver Predictions with Measurements

Joint work - Willi Schur (PSL/WFF); Tech. supp. - Roy Tolbert (NASA/WFF)

	Measured	Predicted	Absolute Error	Relative Error
	M	P	$\|M-P\|$	$\|M-P\| / M \mid$
Diameter	4.0606	4.034	0.0266	0.0064
Z(Diam)	1.2846	1.239	0.0456	0.0354
Height	2.4102	2.449	0.0388	0.0160

Set-up for test vehicle inflations: Elevation (el) and azimuth (az) were recorded.
(a) Side view - elevation measurements; a 4 ft ruler was attached to an overhead hoist and lowered until it was just touching the top of the balloon.
(b) Overhead view - azimuthal measurements, since it was difficult to locate the line of sight tangency point for az, the az-measurements are probably not as accurate as the el-measurements.
(a) Side view

(b) Top view

Benchmarks: ABAQUS and EMsolver

1998 Zero-pressure natural shape balloon. Analyzed single gore. Joint work with W. Schur (PSL/WFF) for NASA Balloon Office

2001-present Spherical balloon with mooring ropes and rigid end caps. Joint work with Laura Cadonati (Princeton/MIT) for The Borexino Project (a solar neutrino particle detector experiment)

Comparison of
EMsolver (virtual fold, K. Brakke) and
ABAQUS (tension field, W. Schur)

ZP-natural shape Joint work with W. Schur (1998)

Parameters	
159 gores	Gore length 182 m
$b=0.05429 \mathrm{~N} / \mathrm{m}^{3}$	$V=0.82$
$E=124 \mathrm{MPa}$	$E_{t}=26.24 \mathrm{kN}$
$m_{f}=18.7 \mathrm{~g} / \mathrm{m}^{2}$	$m_{t}=0.0313 \mathrm{~g} / \mathrm{m}$
$V=832515 \mathrm{~m}^{3}$	(zero-slackness)

Borexino Containment Vessel (joint work with L. Cadonati Princeton/MIT)

Principal Stress Resultants, $P(z)=50 \mathrm{~Pa}$

Principal Stress Resultants

Open System: $P(0)=96 \mathrm{~Pa}, P(2 R)=170 \mathrm{~Pa}$

Bibliography

F. Baginski and W. W. Schur, Structural analysis of pneumatic envelopes: A variational formulation and optimization-based solution process, AIAA-2002-1461, 3rd AIAA Gossamer Spacecraft Forum, Denver, Co, April 22-25, 2002.
F. Baginski and W. Collier, Modeling the shapes of constrained partially inflated high altitude balloons, AIAA Journal, Vol. 39, No. 9, September 2001, 1662-1672.
F. Baginski and K. Brakke, Modeling ascent configurations of strained high altitude balloons, AIAA J., Vol. 36, No. 10 (1998), 1901-1910.
F. Baginski and W. Collier, A mathematical model for the strained shape of a large scientific balloon at float altitude, ASME Jour. of Appl. Mechanics, Vol. 67, No. 1 (2000), 6-16.
F. Baginski, Modeling nonaxisymmetric off-design shapes of large scientific balloons, AIAA Journal, Vol. 34, No. 2 (1996), 400-407.
F. Baginski, W. Collier, and T. Williams, A parallel shooting method for determining the natural-shape of a large scientific balloon, SIAM Journal on Applied Mathematics, Volume 58, Number 3, June 1998, 961-974.
F. Baginski, Qi Chen and Ilan Waldman, Modeling the design shape of a large scientific balloon, Applied Mathematical Modelling, Vol. 25/11, November 2001, 953-966.
L. Cadonati, The Borexino Solar Neutrino Experiment and its Scintillator Containment Vessel, Ph.D. Thesis, Department of Physics, Princeton University, January 2001.
W. Collier, Applications of Variational Principles to Modeling a Partially Inflated Scientific Research Balloon, Ph.D. Thesis, Department of Mathematics, The George Washington University, January 2000.

Bibliography (continued)

A. C. Pipkin, Relaxed energy densities for large deformations of membranes, IMA Journal of Applied Mathematics, 52:297-308, 1994.
W. Schur, Structural behavior of scientific balloons; finite element simulation and verification, AIAA-91-3668-CP, AIAA Balloon Technology Conference, Albuquerque, New Mexico, 1991.
W. W. Schur, Development of a practical tension field material model for thin films, AIAA-94-0513, 32nd AIAA Aerospace Sciences Meeting, Reno, NV, 1994.
X. Liu, C. H. Jenkins, W. W. Schur, Large deflection analysis of membranes by a user supplied penalty parameter modified material model, 5th US National Congress on Computational Mechanics, Boulder, CO, 1999.
W. Schur, Analysis of load tape constrained pneumatics envelopes, AIAA-99-1526. Physical Sciences Laboratories, New Mexico State University, NASA/GSFC/WFF Wallops Flight Facilities, Wallops Island, VA.
J. H. Smalley, Development of the e-balloon, National Center for Atmospheric Research, Boulder, Colorado, June 1970

N . Yajima, A survey of balloon design problems and prospects for large super-pressure balloons in the next century, COSPAR 2000, PSB1-0017, Warsaw, Poland, July 1623.

