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Outline

» Introduction: wave propagation in 1D and 2D periodic structures;

» Sandwich plate-rows with periodic honeycomb core:
 Theoretical Modeling
* Transfer Matrix
* Propagation constants
* Dynamic stiffness matrix

» Performance of periodic sandwich plate-rows:

 Configuration of the unit cell
* Propagation Patterns
e Structural response

» Sandwich plates with periodic honeycomb core:

« Finite Element Modeling of unit cell
* Bloch reduction _ _
» Response to harmonic loading

» Performance of periodic sandwich plates:

 Configuration of the unit cell
* Phase constant surfaces
 Contour plots

» Harmonic response

» Conclusions
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Motivation

Analysis of WAVE DYNAMICS in sandwich plates with core of two honeycomb
materials alternating PERIODICALLY along the structure

/
X’

Analysis is performed through the theory of 2-D PERIODIC STRUCTURES
which are characterized by:

* Frequency bands where elastic waves do not propagate

——> STOP/PASS BANDS

e Directions where propagation of elastic waves does not occur

——> “FORBIDDEN” ZONES
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Motivation

— 2D periodic structures behave as
DIRECTIONAL MECHANICAL FILTERS

GOAL.: Evaluate characteristics of wave propagation for
sandwich plates with periodic core configuration:

» Determine stop/pass band pattern;

» Determine directional characteristic and “forbidden zones™
of response;

» Evaluate influence of the cell and core geometry;
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Basic concepts

Sandwich plates with periodic auxetic core:

e Completely passive treatment

e Performance of traditional light-weight sandwich elements
enhanced by directional filtering capabilities

 [mprovement of the attenuation capabilities of periodic sandwich
panels obtained through a proper selection of the core and cell
configuration

 Stiffening geometric effect and change in mass density depending
on core material geometry

o External dimensions and weight not significantly affected
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Introduction: plate-rows

Periodic structure: assembly of identical elementary components, or cells, connected
to one another in a regular pattern.

The plate-rows here considered are modeled as quasi-one-dimensional multi-coupled periodic systems

Transfer matrix formulation:

U™ cell kg [~ YR H U = cenk [~ W

— . —_— —
FL k-1 FR k-1 |:L k FR K

Interface k

U, O [ . Y, : state vector
00 :[Tk][BJLD € Yi :[Tk] A ‘ .
OF. G OF O T, : transfer matrix

A. :ith eigenvalue of Transfer Matrix T «|A; | =1 :pass band (wave propagation)

log(\; ) = PROPAGATION CONSTANT .

A, | #1 :stop band (wave attenuation)
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Introduction: 2D plates

2D-periodic structure: cells connected to cover a plane

Unit cell

Wave mation in the 2-D structure (Bloch’s Theorem):

W(X,y,Ny,Ny) =‘®E¢xp(uxnx +uyny)
o N/

Motion of unit cell Propagation Constants
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Introduction: 2D plates

Propagation Constants are complex numbers:

Hy =0y + iik (k=x.y)
Attenuation Constant Phase Constant
Condition for wave propagation:

5 =0 & g =-m+m

Imposing the propagation constants allows obtaining the corresponding frequency
of wave propagation:

w=T(&eyx,€y)

:> Phase Constant Surfaces
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Honeycomb core

Geometric layout of regular (A) and auxetic (B) honeycomb structures
6< 0: Re entrant geometry (AUXETIC SOLID)

" Face sheets
a=hl/l /E
B=t/l

(core A) (core B)

/

Honeycomb core A

el

Honeycomb core B

Negative Poisson’s ratio behavior: Q%D i%;

Auxetic honeycombs with 6=-60°, a=2 are characterized by a shear modulus which
outcast up to five times the shear modulus of a regular honeycomb of the same material
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Theoretical Modeling of the sandwich plate

Strain energy: U=U,+U, +U,

 Face sheets (extension + bending):

Y 1( - )I EJ'X VU +Vy Y VU Sl (u +Vv; +2u,yv,Xdedy +
L1 E.h’ ) , , N
212(1 V2 )H{WXX 2w, +wj, +2(L-v, Jwih dxdy, (i =L3)

» Core (shear deformation):

%! u, 0 Ov, —v,0 0dd O
"‘D‘I’] +(w +w )Dh_D -E
D ZdEW U Uy oV —v3% 0
%— h, O h, ' h, 0O %
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Theoretical Modeling of the sandwich plate

Kinetic energy: T=T,+T,+T,

 Face sheets (translation + rotation):

P Wi P Ph -
L O dxdy + = awp, U; L +hpI , i =(1,3)
B e+ d 1
» Core (translation + rotation):
: _h it Ov 4y ok
2 @] 2 4 0 g 2 4 0@
2
p,h, O h+h O O h +h,  OF
—-u, - W vV, =V, — W dxd
zjj Equ > x% E 1V T %E y
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Theoretical Modeling of the sandwich plate

Equations of Motion:

1) (1%‘22) %Jlxx +%(1+v1)vle +%(1 Ju 1@ +Gh;g|j:j2 U1h‘22U g —p.hii, = p,h, Bgl + 5 +V, h, 122hl§:
2) (1%‘22) %vlyy +%(1 +V, Uy, +%(1 —vl)vm@ +th§h%wy —Vlh_zzv g -phy; - p,h, % g W, Zh?LZ hﬁ =
3) (1E_3:332) %JSXX +%(1+v3)v3Xy +%(1 —vg)usyé ~Gh Eﬁ—; } —ul—r;zuég —p;hyti, — p,h, D; +u—g +V, 2h312 hL =0
4) (1E_3:332) %ygyy +%(1+v3)u3Xy +%(1 —v3)vgxé —thDd22 , Vlh_zv - A ATAR @% +V§3 Vi, 2h312 hD_g

5) (D, +D,)I'w Ghz%@(wxﬁ W, b Ut Us— Vgt vy H - (plh + o) i, i, ) — o, W

2

-oh ¢ h+h,)/2) B
_thZ%ETm[Gulx-i_vly) hl[@,lsx ng)% —p,h, %hs hﬂ:é (( 1h23/ E +WW% =0

FEMCI Workshop 2002
May 23, 2002 - NASA Goddard Space Flight Center, Greenbelt, MD.

12



Wave propagation in sandwich plate-rows

Plate-Rows

X
Core B v\
CoreA —» Simply
<« Ssupported edges

>y

Outline of concepts described and methods applied

 SFEM is formulated from Transfer Matrix approach
» Transfer Matrix obtained from distributed parameter model of sandwich plate
» Transfer Matrix is recast to obtain the Dynamic Stiffness Matrix of plate element

TRANSFER MATRIX > PASS / STOP BANDS

ASSEMBLED DYNAMIC

STIFENESS MATRIX > RESPONSE OF STRUCTURE
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Transfer Matrix formulation

 Only the dynamics along the x-axis has to be investigated

* The behavior along the y-axis is described by the harmonic exp(jk,y);

* k,=mriL, (with minteger) is the wave number along the y-axis

 The analysis is performed independently for each harmonic m for the deformations along the y-axis:

state space formulation:

Z (X)=AZK) —=> Z(x)=¢e""Z(0)

Equations of motion

Z :{ul u3 Vl V3 w VVx ulx u3x le V3x Wxxx \Nx>}T
Y=L[Z
Y=H, u v, v;; w w, N, Ng N, N, F M ET according to the
— NG _ CLT (Classical Laminated plate
' N
. . ) Theory).
Generalized Displacements Generalized Forces
Ay T, =L
Y(L,) =L @M% 0" 0Y(0) =
=T, Y(0) Transfer Matrix

(k™ part of the cell)
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Performance of periodic sandwich plate-rows

Cell configuration and Geometry:

i i Honeycomb core A
material thickness y Simply supported edges
Face sheet (1) Al 5mm ¥
core (2) Nomex 9cm Face sheets
Face sheet (3) Al 5 mm Auxetic core B

/

» Aspect ratio L,/ L,=1/2
- Lengthratio L,/ L g=1, 2, 1/2

N
« Internal core geometry: /
Type A: a=1, 6=30° Output\A vI_)(B\A/ Y I—y \Unitcell
v

Type B: a =2, 6=-60° and 6=-30°

° Ly:1 m

4 Core “A’
Simply supported . A//
edges \A . L Core “B
Configuration of periodic plate-row: } /L' Ly ,/
xB v

« 20 cells along S-S edges Forcing function X |< >
F=Fsin(mry/Ly)el“ L
y
y\A
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Performance of periodic sandwich plate-rows

k,=TUL,

Single cell eigenvalues
\ 5

N

~N w

abs(lambda) [-]

o =
L=

0 50 100 150 200 250 300 350 400 450 500
- 20 cells plate-row FRF

-5
10 F gy 0 T T

FRF [m/N]
)

0 50 100 150 200 250 300 350 400 450 500
[Hz]

L /L 5=1; 6,=-60°

L, /L, 5=1/2; 6,=-60°
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Performance of periodic sandwich plate-rows

k,=2mL,

Single cell eigenvalues
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Performance of periodic sandwich plate-rows

ky—BTr/Ly
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2D analysis: Bloch reduction

Cell analysis:
{a;} generalized displacements at interface i,j  {rhiFurl {a:}4F} {0rr} {Fer}
Top

{F;;} generalized forces at interface i,] T ) 1

. _ _ {a3{F) &, SR} | 2 {o 3 {F)

Cell's equation of motion: 3 Interhal I
(x1-wM1fd 5 F} D
Bottom
(s} {Fis} (R {Gre} AFral

where;
{3 9 s s Gar Oes G Ok O G O
{F} % |:LB I:LT FRT FRB I:L FR FB FT FI} !

[K], [M]: cell's stiffness and mass matrices
20
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2D analysis: Bloch reduction

Bloch's Theorem:

* Relation between interface displacements  Relation between interface forces
(compatibility conditions) (equilibrium conditions)

{o:}=e"{a:}  {ae}=e"{a} {Fr=-e"{R} {FJ3}=-e"{F}
{a:}=e"{a,} {dre}=e"{as} {F}=-e"{Fs} {Fu}=-e"{Fs}
{der 3 =" " {0} {Fard=e"""{Fs}

» Reduced Mass and Stiffness Matrices:

MJAAMDA (KA KR with:  {d =[Ado.d {0t oo wg

» Cell's Equation of Motion is reduced at:

([Kred (l«‘x’lly)] _wz[Mred (ux’ I'ly)]){qred} % p

y

Frequency w of wave motion for the assigned set of propagation constants y,, (4,
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2D Wave propagation

Solution of Dispersion Relation:

Phase Constant Surfaces: w=w(g, &, )

« Phase Constant Surfaces are symmetric

with respect to both &, &, 0
« Analysis can be limited to the first Ay

quadrant of the g, & plane, within o
the [0,m] range for &, ¢, .

w (rad/s)

First three phase constant surfaces for a sandwich plate with uniform core (A)
represented over the first propagation zone ([0, range for &, &, )
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Performance of periodic sandwich plates

Cell configuration and Geometry:

material thickness [mm] Honeycomb core A
Face sheet (1) Al 1 ¥
core (2) Nomex 2
Face sheet (3) Al

1
: /
- Aspectratio L,/ L, =1
» Lengthratio L,/ L g =1 and 2/3 L
_ JA

\
« Internal core geometry:

e /
Type A: a=1, 6=30° v|—y|3\A/ SN L \Unit cell

Face sheets
| Auxetic core B

Type B: a =2, 6=-60° /
Harmonic forcing_ e .
~ L . v
I) 7 YA Core “B”
Configuration of periodic plate: ( \/)* ] Ly S
S 2 ﬂ
< >
L
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Phase Constant Surfaces

* First phase constant surface
 Contour plot

e

w (rad/s)

02 03 04 05 06 07 08 09 1
gl

The energy flow vector P at a given frequency w lies along the normal to the

corresponding iso-frequency contour line in the k,, k, space, where ki=&/L; , (i=xy).

oew . 0w L

P:EEP&‘X Lx,agy Lyﬁ

The perpendicular to a given iso-frequency line for an assigned pair
& & corresponds to the direction of wave propagation)

(*) Langley R.S., “The response of two dimensional periodic structures to point harmonic forcing” JSV (1996) 197(4), 447-469.
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Contour plots

Influence of the periodic core:

Homogeneous core, L,/ L, =1 Periodic core, L,/ L, =1, L s/l g=1

' 20
18 \1‘N

17

T T T T T T T
06 07 08 09 1 02 03 04 05 06 07 08 09 1
gl gl

X

Periodic core (length ratio =1):
e Directional behavior expected
above a “transition frequency”

Homogeneous core:
 No directional behavior expected
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Plate harmonic response

Plate deformed configuration for excitation at «w=7.5 rad/s

Homogeneous

Number of cells: N,= 20, N,= 20; 40x40 finite element grid
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Plate harmonic response

Plate deformed configuration for excitation at w=9.5 rad/s

Homogeneous

Number of cells: N,= 20, N,= 20; 40x40 finite element grid
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Plate harmonic response

Plate deformed configuration for excitation at «=13 rad/s

Homogeneous

Number of cells: N,= 20, N,= 20; 40x40 finite element grid
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Conclusions

* Wave propagation in periodic sandwich plates and plate-rows is analyzed;

* Auxetic and regular honeycomb cellular solids are utilized as core materials to generate
Impedance mismatch zones;

» Analysis is performed through the combined application of the theory of periodic structures,
the FE method, and the Transfer matrix and Spectral FE methods

 The capability of the periodic core to generate stop bands for the propagation of waves
along the plate-rows, and directional patterns for the propagation of waves along the plate
plane has been assessed;

* Analysis allows evaluating pass/stop bands propagation patterns, and the phase constant
surfaces for the estimation of directional characteristics for wave propagation

* The filtering capabilities are influenced by the geometry of the periodic cell;

* Harmonic response shows directionality at specified frequencies, and confirms the
propagation patterns

e Completely passive treatment;
e External dimensions and weight not significantly affected;

* Improvement of the attenuation capabilities of periodic sandwich panels obtained through a
proper selection of the core and cell configuration;
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