

Fastened Joint Analysis and Test Correlation of the MLA Beam Expander

Craig L. Stevens Craig.Stevens@nasa.gov Mechanical Systems Analysis & Simulation Branch NASA Goddard Space Flight Center Greenbelt, Maryland

FEMCI Workshop Presentation

May 6, 2004

- 1. Introduction
- 2. Problem Description
- 3. Pre-Test Analysis
- 4. Test Results
- 5. Model Correlation
- 6. Conclusions

Introduction

- Mercury Laser Altimeter (MLA) on Mercury Surface, Space Environment, Geochemistry, and Ranging (MESSENGER) spacecraft
- MLA produces accurate measurements of topography and measures Mercury's wobble (due to the planet's libration)
- MESSENGER Objectives:
 - Determine the structure of Mercury's mantle and crust
 - Investigate Mercury's polar caps
 - Determine the state of Mercury's core (fluid or solid?)
- MESSENGER developed by Johns Hopkins University Applied Physics Laboratory (APL)
- MLA developed by NASA Goddard Space Flight Center (Delivered to APL June 2003)
- Launch
 - August 2004
 - Delta II 2925H-9-5

Introduction

MLA Configuration

Problem Description

Flight laser bench with attached beam expander

- •Three point mount: #2-56 fasteners
- •Beam expander: mass ~0.4 lbm, height ~6.5"

MLA laser workmanship level vibration test/analysis •Low level: 0.04 G2/Hz, 6.8 GRMS

Task:

•Pre Test Analysis: **Predict natural frequencies** and loads

- •Correlate FEM with test data
- Investigate test anomalies and determine causeFEM:
 - •CQUAD4 model
 - •Fixed Base

Pre-Test Analysis

- •Use Springs (CELAS) to model joint stiffness:
 - Fitting stiffness = $K_f/4$ (9)
 - Bolt stiffness = K_b (3)
 - Normal constraints (center flange) = K_{NC} (3)
 - Normal constraints (near bolt) = K_{NCb} (6)
- •Normal constraint locations chosen based on aluminum engineering model test data
- •Value of K_{NC} and K_{NCb} chosen based on aluminum engineering model test data and fitting stiffness
 - •Same order of magnitude as fitting stiffness
 - •1E+7 #/in
- •X and Y shear forces reacted through bolts using RBE2

Normal modes analysis:

MODAL EFFECTIVE MASS FRACTION: PRETEST							
MODE FREQ		T1		T2		Т3	
NO.	(Hz)	FRACTION	SUM	FRACTION	SUM	FRACTION	SUM
1	509.8	2.14E-01	2.14E-01	4.65E-05	4.65E-05	6.76E-05	6.76E-05
2	518.3	4.05E-05	2.14E-01	2.13E-01	2.13E-01	3.77E-09	6.76E-05

Z-axis:

Test performed with no issues (no major modes) Y-Axis:

Sine Signature Y

Modal Frequencies			
ltem	X F _n (Hz)	Y F _n (Hz)	
Analysis	510	518	
PreSine Y	507	522	

Test Results

Y-axis (cont'):

•Frequency shift as random vibration levels increased:

Frequency Migration				
Axis	Test	X F _n (Hz)	Y F _n (Hz)	
Y	Pre Sine	507	522	
	-18 dB	500	502	
	-6 dB	444	440	
	Full Level	402	410	
	Post Sine	482	451	

- •Harmonics observed in random beam expander responses
 - •Integer multiples of resonant frequency
 - •Indicates nonlinear response
 - •Not present in sine runs

Why do harmonics of resonant frequency exist?: •Asymmetrical distortion of sine wave

•Several reasons: Contact Boundary Condition

- •Frequency shifts observed in pre and post sine sweeps
- •Modal frequencies drop over 10%
- •X and Y modes switch order

Modal Frequencies			
ltem	X F _n (Hz)	Y F _n (Hz)	
PreSine Y	507	522	
Post Sine	482	451	

Model Correlation

- •Use MSC NASTRAN Solution 200 to correlate model and investigate frequency shift
- •Assume linear modes and mode shapes
- •Vary CELAS stiffnesses to investigate preload loss
- •Key cards:
 - •MODTRAK: Performs cross orthagonality check to ensure proper modes meet constraints
 - •DEQATN: Create Least squares objective function formulation

$$E(f_{n1}, f_{n2}, f_{n1act}, f_{n2act}, W_1, W_2) = W_1(f_{n1} - f_{n1act})^2 + W_2(f_{n2} - f_{n2act})^2$$

- •For Post Sine Y correlation:
- $W_1 = 1.0$ $W_2 = 1.0$ $f_{n2act} = 451$ Hz (Y Mode) $f_{n1act} = 482$ Hz (X Mode)

Model Correlation

Results:

\$ ¢	UPDAT	ED DESIGN MODEL DATA ENTRIES			
ہ DES	/AR *	INCS	7.72887313E+05	1.00000000E+04+D	1V
*D	1V	1.0000000E+10			
DESV	/AR *	2KB1	1.19993400E+06	1.0000000E+04+D	2V
*D	2V	1.0000000E+10			
DES	/AR *	3KF1	9.05991600E+05	1.0000000E+04+D	3V
*D	ЗV	1.0000000E+10			
DESV	/AR *	4KB2	1.19993800E+06	1.0000000E+04+D	4V
*D	4V	1.0000000E+10			
DES	/AR *	5KF2	3.37498700E+06	1.0000000E+04+D	5V
*D	5V	1.0000000E+10			
DESV	/AR *	6КВЗ	1.19594200E+06	1.0000000E+04+D	бV
*D	бV	1.0000000E+10			
DES	/AR *	7KF3	1.45899362E+05	1.0000000E+04+D	7V
*D	7V	1.0000000E+10			
DESV	/AR *	8NCB1	8.14678800E+06	1.0000000E+04+D	8V
*D	8V	1.0000000E+10			
DESV	/AR *	9NCB2	4.54948100E+06	1.0000000E+04+D	9V
*D	9V	1.0000000E+10			
DES	/AR *	10NCB3	1.0000000E+04	1.00000000E+04+D	10V
*D	10V	1.0000000E+10			

\$ MODE TRACKING HAS BEEN PERFORMED SUCCESSFULLY WITH SOME CHANGE IN THE MODE ORDER. \$ ALL THE DRESP1 ENTRIES ASSOCIATED WITH MODE TRACKING ARE WRITTEN HERE FOR CONVENIENCE. \$ DRESP1 101FN1 FREQ 2 DRESP1 102FN2 FREQ 1

Model Correlation

Results (Cont'):

ltem	Initial	Post	% change
NCS	1.00E+07	7.73E+05	-92.3%
KB1	1.20E+06	1.20E+06	0.0%
KF1	3.00E+06	9.06E+05	-69.8%
KB2	1.20E+06	1.20E+06	0.0%
KF2	3.00E+06	3.37E+06	12.5%
KB3	1.20E+06	1.20E+06	0.0%
KF3	3.00E+06	1.46E+05	-95.1%
NCB1	1.00E+07	8.15E+06	-18.5%
NCB2	1.00E+07	4.55E+06	-54.5%
NCB3	1.00E+07	1.00E+04	-99.9%

Over 90 % stiffness loss in fastener 3 (or 2) •Preload ~0

•Results from post test investigation verified no structural failure and no other significant source for frequency shift

- Presence of harmonics in broadband responses indicative of nonlinearities in test data
- Optimizer is quick and efficient method to correlate modes and mode shapes of models
- Over 90% stiffness loss in fastener 2 or 3
- Results indicate preload loss is the probable cause of frequency shift

References

- 1. Joseph Shigley. *Mechanical Engineering Design*. Fifth Edition. McGraw-Hill, Inc. New York. 1989
- 2. Thomas Sarafin. *Design and Analysis of Fastened Joints for Aerospace Engineers.* Course Notes. Instar Engineering and Consulting, Inc. 2001.
- 3. John H. Bickford. *Handbook of Bolts and Bolted Joints.* Marcel Dekker, Inc. New York
- 4. Ryan Simmons. *MLA Laser Subassembly Workmanship Vibration Post-Test Report*. NASA GSFC, Greenbelt, Maryland, 2003. MLA-RPT-000127
- 5. Steven W. Smith. *The Scientist and Engineer's Guide to Digital Signal Processing*, 2nd Edition. California Technical Publishing, San Diego, California, 1999.
- 6. Scott Gordon. Private Correspondence. NASA GSFC, Greenbelt, Maryland.
- 7. Daniel Kaufman. Private Correspondence. NASA GSFC, Greenbelt, Maryland.