

DTFM Modeling and Sensitivity Analysis for Long Masts

Current Status

- Completed formulations for DTFM modeling of long masts
- Initiated MATLAB programming for a multiple-bay mast dynamic analysis

Why DTFM is unique?

- --In the Laplace domain.
- --Using Distributed Transfer Function instead of Shape Function.

Why DTFM is distinctively suitable for solar sails?

- --DTFM decomposes the structure only at those points where multiple structural components are connected -> minimum number of nodes, small matrices, & high computational efficiency.
- --Closed form analytical solutions \rightarrow reliable results.
- --Able to model local material and geometrical imperfections.
- --Convenient in handling structural systems with passive and active damping, gyroscopic effects, embedded smart material layers as sensing and actuating devices, and feedback controllers.

- 1. Decomposition of a mast into components.
- 2. Generation of state space form for each component.
- 3. Generation of distributed transfer function for each component.
- 4. Generation of dynamic stiffness matrix for each component and assembly of components.
- 5. Static and dynamic solutions:
 - Natural Frequencies and mode shapes.
 - Buckling analyses.
 - Frequency Responses.
 - Static and Dynamic Stress Analyses.
 - Time Domain Responses.

A set of governing equations for each individual component:

$$\sum_{j=1}^{n} \sum_{k=0}^{N_{j}} \left(a_{ijk} + b_{ijk} \frac{\partial}{\partial t} + c_{ijk} \frac{\partial^{2}}{\partial t^{2}} \right) \frac{\partial^{k} u_{j}(x,t)}{\partial x^{k}} = f_{i}(x,t)$$
$$x \in (0,L), \quad t \ge 0, \quad i = 1, \cdots, n$$

Example: a beam component

$$EI\frac{\partial^4 v}{\partial x^4} + \rho A\frac{\partial^2 v}{\partial t^2} = p$$

State space form:
$$\frac{d}{dx}\eta(x,s) = F(s)\eta(x,s) + q(x,s)$$

$$F(s) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \frac{-\rho A s^2}{EI} & 0 & 0 & 0 \end{bmatrix} \eta(x,s) = \begin{cases} \overline{v}(x,s) \\ \overline{v}'(x,s) \\ \overline{v}''(x,s) \\ \overline{v}''(x,s) \end{cases} q(x,s) = \begin{cases} 0 \\ 0 \\ 0 \\ p(x,s)/EI \end{cases}$$

A boundary value problem:

$$\frac{d}{dx}\eta(x,s) = F(s)\eta(x,s) + q(x,s) \qquad x \in (0,L)$$

M $\eta(0,s) + N\eta(L,s) = r(s)$

The solution is expressed as transfer functions:

$$\begin{split} \eta(x,s) &= \int_{0}^{L} G(x,\zeta,s) q(\zeta,s) d\zeta + H(x,s) r(s) & x \in (0,L) \\ G(x,\zeta,s) &= \begin{cases} e^{F(s)x} (M + Ne^{F(s)L})^{-1} Me^{-F(s)\zeta} & \zeta \leq x \\ -e^{F(s)x} (M + Ne^{F(s)L})^{-1} Ne^{F(s)(L-\zeta)} & \zeta \geq x \end{cases} \\ H(x,s) &= e^{F(s)x} (M + Ne^{F(s)L})^{-1} \end{split}$$

DTFM Mast Analysis : Step 3--DTF

State space vector:
$$\eta(\mathbf{x}, \mathbf{s}) = \begin{bmatrix} \alpha^{\mathrm{T}}(\mathbf{x}, \mathbf{s}) & \varepsilon^{\mathrm{T}}(\mathbf{x}, \mathbf{s}) \end{bmatrix}^{\mathrm{T}}$$

Displacement vector:
$$\alpha(\mathbf{x}, \mathbf{s}) = \begin{bmatrix} \alpha_{1}^{\mathrm{T}}(\mathbf{x}, \mathbf{s}) & \alpha_{2}^{\mathrm{T}}(\mathbf{x}, \mathbf{s}) & \cdots & \alpha_{n}^{\mathrm{T}}(\mathbf{x}, \mathbf{s}) \end{bmatrix}^{\mathrm{T}}$$

Strain vector:
$$\varepsilon(\mathbf{x}, \mathbf{s}) = \begin{bmatrix} \varepsilon_{1}^{\mathrm{T}}(\mathbf{x}, \mathbf{s}) & \varepsilon_{2}^{\mathrm{T}}(\mathbf{x}, \mathbf{s}) & \cdots & \varepsilon_{n}^{\mathrm{T}}(\mathbf{x}, \mathbf{s}) \end{bmatrix}^{\mathrm{T}}$$

Force vector:
$$\sigma(\mathbf{x}, \mathbf{s}) = \overline{\mathrm{E}}\varepsilon(\mathbf{x}, \mathbf{s})$$

$$\mathbf{v}$$
 Example: a beam component

$$\alpha(\mathbf{x}, \mathbf{s}) = \begin{cases} \overline{v}(\mathbf{x}, \mathbf{s}) \\ \overline{v}'(\mathbf{x}, \mathbf{s}) \end{cases}$$

$$\varepsilon(\mathbf{x}, \mathbf{s}) = \begin{cases} \overline{v}''(\mathbf{x}, \mathbf{s}) \\ \overline{v}'''(\mathbf{x}, \mathbf{s}) \end{cases}$$

$$\sigma(\mathbf{x}, \mathbf{s}) = \begin{cases} Q(\mathbf{x}, \mathbf{s}) \\ M_{\mathrm{f}}(\mathbf{x}, \mathbf{s}) \end{cases}$$

$$= \overline{\mathrm{E}}\varepsilon(\mathbf{x}, \mathbf{s}) = \begin{bmatrix} 0 & \mathrm{EI} \\ \mathrm{EI} & 0 \end{bmatrix} \begin{bmatrix} \overline{v}''(\mathbf{x}, \mathbf{s}) \\ \overline{v}'''(\mathbf{x}, \mathbf{s}) \end{cases}$$

DTFM Mast Analysis : Step 4--Dynamic Stiffness Matrix

Force vectors at two ends of the component: $\begin{bmatrix} \sigma(0,s) \\ \sigma(L,s) \end{bmatrix} = \begin{bmatrix} \overline{E}H_{\sigma 0}(0,s) & \overline{E}H_{\sigma L}(0,s) \\ \overline{E}H_{\sigma 0}(L,s) & \overline{E}H_{\sigma L}(L,s) \end{bmatrix} \begin{bmatrix} \alpha(0,s) \\ \alpha(L,s) \end{bmatrix} + \begin{bmatrix} p(0,s) \\ p(L,s) \end{bmatrix}$ Transformed from distributed Dynamic stiffness matrix external forces Systematically assembles dynamic stiffness matrices of each component Dynamic stiffness matrix of the whole system $\boldsymbol{K}(s) \times \boldsymbol{U}(s) = \boldsymbol{P}(s)$

DTFM Mast Analysis: Step 5--Static and Dynamic Solutions

Resonant frequencies of the structure:

$$det[\mathbf{K}(s_i)] = 0 \qquad s_i = \sqrt{-1} \times \omega_i$$

Mode shapes--nontrivial solutions:

 $\boldsymbol{K}(s_i) \times \boldsymbol{U}(s_i) = 0$

Frequency responses:

 $\boldsymbol{U}(s) = \boldsymbol{K}^{-1}(s) \times \boldsymbol{P}(s)$

Static analysis:

 $\boldsymbol{K}(0) \times \boldsymbol{U}(0) = \boldsymbol{P}(0)$

Time domain responses:

Inverse Laplace transform

May 4, 2004

- (1) Two elastically coupled beams
- (2) Sensitivity Analysis of a Light-Weight Gossamer Boom

Example (1)--Two elastically Coupled Beams

Example (1)--Two Elastically Coupled Beams

Mode	DTFM	FEM	FEM	FEM
number	6*6 matrix	18 Elements	34 Elements	66 Elements
1	16.3	16.3	16.3	16.3
2	41.0	41.1	41.0	41.0
3	54.6	53.1	54.2	54.5
4	79.2	77.8	78.9	79.1
5	144.7	138.3	143.1	144.3
6	157.0	150.5	155.4	156.6
7	273.9	258.1	269.9	272.9
8	305.2	288.2	289.9	304.1
9	448.7	415.4	440.4	446.6
10	500.5	463.9	491.2	498.1
11	669.1	601.7	653.7	665.3
12	747.5	672.7	730.5	743.3

Example (2)--Sensitivity Analysis of a Light-Weight Gossamer Boom

Buckling analysis of a boom:

$$\frac{d^2}{dx^2} \left(EI \frac{d^2}{dx^2} w(x) \right) + P \frac{d^2}{dx^2} w(x) = 0$$

EI is not a constant along the boom:

Divided the boom into a number of sections and each sections is considered to be uniform—Stepwise uniform

Transfer functions are expressed as :

$$G(x,\xi) = \begin{cases} H(x)M\Phi^{-1}(\xi), & \xi < x \\ -H(x)N\Phi(L)\Phi^{-1}(\xi), & \xi > x \end{cases}$$

 $H(x) = \Phi(x)(M + N\Phi(L))^{-1}$

$$\Phi(x,s) \approx \hat{\Phi}(x,s) = e^{F_{k+1}(x-x_k)} T_k(s) e^{F_k(x_k-x_{k-1})} \dots T_2(s) e^{F_2(x_2-x_1)} T_1(s) e^{F_1(x_1)} \qquad x \in (x_k, x_{k+1})$$

$$T_k = \begin{bmatrix} I & 0 \\ 0 & E_{k+1}^{-1}E_k \end{bmatrix} \in C^{n \times n}$$

May 4, 2004

Example (2)--Sensitivity Analysis of a Light-Weight Gossamer Boom

Length of the inflatable boom: 197 inches Bending stiffness EI_0 : 656673 lb*in^2

$$EI = EI_0 (1 + \varepsilon \times \sin(\frac{x\pi}{L}))$$

Buckling force as the function of bending stiffness deviation $\boldsymbol{\epsilon}$

3	0%	± 2%	± 4%	± 6%	± 8%	± 10%
Pcr (+ %)	167.0	169.7	172.7	175.4	178.2	181.1
Pcr (- %)	167.0	164.2	161.2	158.5	155.6	152.8

Ration of buckling force changing as the function of ϵ

3	0%	± 2%	± 4%	± 6%	± 8%	± 10%
Pcr/Pcr ₀	1.0000	1.017	1.034	1.051	1.067	1.085
Pcr/Pcr ₀	1.0000	0.983	0.966	0.949	0.932	0.915

DTFM Synthesis for Solar Sails

May 4, 2004

Decomposition of a Solar Sail

Dynamic stiffness matrices of masts—ready.

Dynamic stiffness matrix of the spacecraft—lumped mass, ready.

Steps needed to get dynamic stiffness matrices of membranes:

1) PVP membrane analysis \longrightarrow M \ddot{x} + Kx = f

2) Laplace transform $\longrightarrow (Ms^2 + K)\hat{x} = \hat{f}$

Solar sail synthesis:

- 1) Displacement compatibility
- 2) Force balance