
Coarse and Fine-Grain 
Parallelism for Inverse Design 

Optimization

James St. Ville & Subby Rajan
Hawthorne & York, Intl.

Phoenix, AZ

Ashok Belegundu
Pennsylvania State University



22

System Architecture
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Single Processor
Intel P3 and P4 (Windows & Linux)
Itanium (Red Hat Advanced Linux & Windows 
2003 Server)

Distributed Processing using MPI (TCP/IP)
CML: 25 nodes, 24 processors at ASU (P4-3.06 
MHz, 2 GB RAM, Red Hat Linux)
FEM: 8 nodes, 16 processors at ASU (Dual P4-1.7 
GHz, 1 GB RAM, Windows 2000)
HYI: 4 nodes, 4 processors at HYI (P3-1 GHz, 1 
GB RAM, Windows 2000)

Computing Platforms
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Objective Functions

Weight, mass or volume
Compliance
Constrained Least-Squares
Thermal Resistance
Kinetic Energy, Sound Pressure
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Constraints
Constraints

Strength-based (failure criterion based)
Compliance
Nodal displacements
Frequency
Linearized buckling
Volume, mass or weight
Geometry
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Suite of Optimizers

Method of Feasible Directions
Specialized Least-Squares Solution
Optimality Criteria
Genetic Algorithm
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Gradient-Based Optimization

4 Major Steps
Function Evaluation (FE)
Gradient Evaluation (GE)
Direction-Finding (DF) Step
Line Search (LS)
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3-Level Parallelism

Scenario: NP= 8, d= 4, f= 2
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Sizing Optimization: Sequential 
versus Distributed Processing
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Fuel Tank Design
FE Model

2722 nodes
5440 elements
Uniform internal 
pressure

Design Model
40 design variables
Von Mises FC
30 iterations
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Fuel Tank Design (FEM)

7.091254-ge –df:4 –ls:416 (2PN)
5.581594-ge –df:4 –ls:28 (1PN) 

4.112166-ge –df:48 (1PN)

3.932265-ge –ls8 (1PN)

1.864792-ge8 (1PN)
1.08896NA1

SpeedupTime
(seconds)

Parallel
Comps

# of 
Procs
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Fuel Tank Design (CML)

4.60783-ge –df:4 –ls:624
4.92732-ge –df:4 –ls:416 

3.92920-ge –df:4 –ls:28

2.181652-ge –ls8

1.502395-ge8 
1.03602NA1

SpeedupTime
(seconds)

Parallel
Comps

# of 
Procs
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Fuel Tank Design
Objective Function History
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Truss Design
FE Model

1581 nodes
4550 elements
Wind Loads

Design Model
150 design 
variables
Axial stress
20 iterations
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Truss Design (FEM)

2.411117-ge –df:4 –ls:416 (2PN)
2.621025-ge –df:4 –ls:28 (1PN) 

2.611031-ge –df:48 (1PN)

2.251196-ge –ls8 (1PN)

1.421890-ge8 (1PN)
1.02690NA1

SpeedupTime
(seconds)

Parallel
Comps

# of 
Procs
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Truss Design
Objective Function History

(ROD-T1581)
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Topology Optimization
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3D Topology Optimization

FE Model
173663 nodes
159763 elements
Mech. Loads
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3D Topology Optimization
(Mass Fraction = 0.5)
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3D Topology Optimization
(Mass Fraction = 0.3)
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3D Topology Optimization 
(FEM)

1.03221.0449216 
(2PN)

1.735581.881388 
(1PN)

1.03201.0381316 
(2PN)

1.685361.972498 
(1PN)

Normalized 
Time

Parallel 
FEA 

Time (s)

Normalized 
Time

Topology 
Opt. Time 

(s)

# of 
Procs
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3D Shape Optimization
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3D Shape Optimization 
(FEM)

2.934269-ge –ls –fea:48 (1PN)

2.534954-ge –ls8 (1PN)

1.369235-ge8 (1PN)
1.012525NA1

SpeedupTime
(seconds)

Parallel
Comps

# of 
Procs
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3D Shape Optimization 
(CML)

2.441895-ge –ls –fea:824 (1PN)

1.772608-ge –ls –fea:424 (1PN)

2.182122-ge –ls –fea:816 (1PN)

1.622847-ge –ls –fea:416 (1PN)

1.363396-ge –ls –fea:48 (1PN)
1.04616NA1

SpeedupTime
(seconds)

Parallel
Comps

# of 
Procs
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Topology & Shape Optimization of 
an L-Bracket
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Design Flow Diagram
CAD System HYI-3D

Create solid model,
FEA and design data

Prep3D
Topology

optimization

Design3D/MP

Post3DCreate shape and
sizing optimization data

using parametric solid modeling

Prep3D
Shape and/or

sizing optimization

Update solid modelPrep3D

User prepares for
manufacturing

Design3D/MP
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Shape Optimization of an 
Automotive Torque Arm
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Torque Arm Design
FE Model

Plane stress
Tip loading

Design Model
4 design variables
Von Mises FC (800 
MPa)
Frequency 
constraint (> 400 
Hz)
Linear buckling 
constraint (> 750 N)
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Torque Arm Problem

Stress Constraint

Stress + 
Frequency

Stress + 
Frequency + 
Buckling
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Torque Arm Problem

102179750.1421.5751Stress + 
Freq. + 
Buckling

99036-401776Stress + 
Freq.

83818--800Stress

Volume 
(mm3)

Buckling 
Load (N)

Freq. 
(Hz)

Max. 
VMFC 
(MPa)

Type
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Acoustics Optimization
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Acoustics Optimization

• Focus has been on experimentally verified, passive 
noise radiation, from vibrating plates and shells – e.g., 
appliance covers or side panels, oil pan, timing chain 
cover plate, trim panels in aircraft

• Objective is based on multiple attributes (sound 
power over a frequency band, weight, cost, amount of 
damping)

• Design Idea: attach masses, vibration absorbers, air-
filled cavities etc to the existing structure

• Design variables are the parameters of the 
attachment structures
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• Simulation Codes: In-house boundary element for 
sound power, FEA for vibration 

• New fast re-analysis techniques have been developed 
for obtaining response spectrum; 

modal calculations of original structure done once 
only, outside optimization loop

Efficient for broadband objectives since there are no 
peak searches

Absorber frequencies can be closely spaced

• Coupled structure-acoustic vibration analysis method 
has now been developed – can now attach a thin air-filled 
cavity to structure

Acoustics Optimization
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A reduced eigenvalue method for broadband analysis of a structure 
with vibration absorbers possessing rotatory inertia, J. of Sound and 
Vibration, 281, pp. 869-886, 2005. [Grissom, Belegundu, et al]

Conjoint  Analysis  Based  Multiattribute Optimization : Application  in  
Acoustical  Design, To Appear, J. of Structural Optimization, 2005. 
[Grissom, Belegundu, et al]

Finite element depiction of the 
curved pressure vessel

Pressure Vessel
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90
dBSPL

rms

40

Mag (dB)

 kHz20  Hz

Linear Spectral 1 2.TRC
X:355  Hz Y:85.841 dBSPL

SOUND PRESSURE LEVEL 1 METER FROM THE 
VESSEL

The problematic noise occurs at around 360 Hz, a 
harmonic of the motor frequency, and at the next three 
harmonics, 720, 1080, and 1440
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Define Geometry/Materials

Conjoint Analysis

Modal Analysis of Base Structure

Initial Acoustic Analysis

Modify Many Absorber 
Parameters Including Rotatory

Inertia Effects

Finished

?

Forcing Function

Calculate Frequency Response

Calculate Objective

Method for Broadband 
Acoustic Response
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Attributes Number 
of Beams

dB 
Reduction: 
low freq. 

range

dB 
Reduction: 
mid freq. 

range

dB 
Reduction: 
high freq. 

range

Description

Kinetic 
Energy 

Objective
17 15 10 2

Poor high 
freq. 

reduction & 
many beams

Sound 
Pressure 
Objective

10 14 6 7
Better than 

Kinetic 
Energy 

objective

Multi-
attribute 

Objective
6 13 6 7

Almost the 
same reduction 

as Sound 
Pressure 

objective, but 
easier to 

manufacture

Results
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nb = 17
KE  Objective

nb = 10
SPL  Objective 

nb = 6
Multiattribute Objective 

The “Optimized Product”
A set of optimized Broadband Vibration Absorbers with 

a variable number of beams, nb
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Concluding Remarks

Future of engineering analysis and 
design is in some form of a combined 
desktop-distributed computing 
paradigm
Challenges lie ahead for inverse 
analysis and design
Tightly integrated multi-physics design 
optimization offers an attractive 
solution to reducing design cycle times


