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1. Introduction 
The Craig-Bampton methodology is used extensively in the 

aerospace industry to re-characterize large finite element models 
into a set of relatively small matrices containing mass, 
stiffness and mode shape information that capture the fundamental 
low frequency ~esponse modes of the structure. The mode shape 
information consists of all boundary modes expressed in physical 
coordinates and a truncat-ed set of ela-stic modes expressed in 
modal coordinates. These matrices are easily manipulated for a 
wide range of dynamic analyses. The method was first developed 
by Walter Hurty in 1964 (Ref. 1) and later expanded by Roy Craig 
and MerVYn Bampton in 1968 (Ref. 2). 

The Craig-Bampton formulation is most often used for: 

1.	 Efficient transmittal of spacecraft models to other 
organizations for a Coupled Loads Analysis (CLA); Craig­
Bampton matrices are coupled with launch vehicle models 
and responses are determined for various flight events. 

2.	 Base-shake analyses in which motion of the boundary 
degrees of freedom is specified for a model from a 
Coupled Loads Analysis and responses for various 
perturbations to the model may be determined without 
repeating the entire CLA; 

3.	 Modal synthesis in which the models of, two or more 
structures that have a common interface (each called a 
sub-structure) may be coupled together for an efficient 
analysis of the combined structure. 

The purpose of this paper is to present a summary of the 
Craig-Bampton assumptions and methodology. Solutions to a few 
practical problems are outlined. Some familiarity with NASTRAN 
is assumed. 

A secondary purpose is to present a standard set of notation 
that is based on NASTRAN DMAP terminology. 
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2. Development of Craig-Bampton Methodology 

2.1 The Primitive Equation of Motion for a Structure 

Complex linear elastic structures are universally analyzed 
today using finite element programs such as NASTRAN to generate 
mass and stiffness matrices that characterize the structure. The 
models are generally developed for static analyses and are thus 
very large, perhaps having several thousand degrees of freedom, 
since static analyses require a detailed set of grid points to 
map internal stresses and strains. However, dynamic analyses, 
which are based upon knowledge of f undamen t a L frequencies and 
their associated mode shapes, are better performed with far fewer 
degrees of freedom in the formulation. Indeed the number of 
nodes needed to characterize the fundamental modes is relatively 
small. Furthermore, modes above 100 Hz are typically truncated 
since they contain too little energy to be physically 
significant. 

When determining modes and mode shapes NASTRAN generates a 
set of critical degrees of freedom, called the A-set (analysis 
set), and uses Guyan reduction (see Appendix A) to generate 
equivalent mass [M AA] and stiffness [K AA ] matrices that are 
associated with these freedoms. The analysis set typically 
contains a few hundred freedoms for a large finite element model 
that has several thousand degrees of freedom specified on GRID 
cards. 

The corresponding displacements and accelerations for these 
00 

degrees of freedom are contained in the matrices [VA] and [VA]. 
The applied forces are contained in the matrix [FA]' The 
resulting undamped equation of motion for the free unconstrained 
structure is: 

Eq. 2.1.1 

Since the Craig-Bampton method will require the use of 
boundary and interior points, it is convenient to partition these 
matrices into fixed, interfaced or supported boundary nodes, R, 
and the independent elastic nodes, L, as follows: 

{uJ {~:} Eq. 2.1.2 
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and Eq. 2.1.1 becomes 

Eq. 2.1.3~:J~:] + 

.. Theb-oundary set includes not only the base degrees of 
freedom that might later be constrained but also the interface 
degrees of freedom that might later be coupled to another 
structure (modal synthesis) The boundary points can be released 
in later solutions. 

The choice of notation Rand L follows NASTRAN. The R-set 
are those degrees of freedom specified on a SUPORT card that 
~emove rigid body motion from the structure and the L-set are 
those degrees of freedom that are left after removing the R-set 
from the A-set. 

As a practical matter the effects of damping are considered 
when solving many dynamics problems. Damping is assumed to be 
proportional to the velocity of each point in the displacement 
set and the equation of motion becomes: 

Eq. 2.1.4 

where eLL is typically the only non-zero term in the damping 
matrix. 
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2.2 The Craig-Bampton Transformation 

There are two steps in performing the Craig-Bampton 
transformation. First and foremost, the set of elastic physical 
coordinates U

L 
for each mode is transformed to a set of modal 

coordinates QL' Thus the reduced finite element model discussed 
in Section 2.1 is transformed from a set of physical coordinates, 
UA , to a hybrid set of physical coordinates at the boundary, UR' 
and modal coordinates at the interior, QL. Identical solutions 

result from either formulation. The magic of the matrix QL is 
that each column, representing one mode shape, contains only one 
non-zero term. 

Secondly, the set of modal solutions, QL' is truncated to 

some smaller set, say qm' This is practical because in problems 
with multiple degrees of freedom the contribution of the higher 
frequency modes to the total response of a low frequency 
excitation is small and may be neglected. As a rule of thumb, 
the modal content of a given sub-structure should retain mode 
shapes with frequencies at least 1.5 times higher than that 
required in the composite structure in modal synthesis or 1.5 
times higher than the excitation frequency. 

The Craig-Bampton hybrid coordinates {UR ~} are related to 
the physical coordinates {UR U

L
} as follows: 

m<L Eq. 2.2.1 

where {B} has A rows and R columns and {$} has A rows and m 

columns. The vectors in {B} are usually referred to as the 

Boundary Node Functions and the vectors in {$} are usually 
referred to as the Fixed Base Mode Shapes. 

The Craig-Bampton transformation matrices {B} and {$} may, 
in turn, be partitioned as: 

{B} Eq. 2.2.2{~} 
where [¢R] and [~] are to be determined. The identity matrix [I] 
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has R rows and columns while matrix [¢R] has L rows and R 
columns; the null matrix [OJ has R rows and m columns while the 
matrix [¢L] has L rows and m columns. Thus 

Eq. 2.2.3{uJ = {~:} = {:, ~}{~:} 

Note that the physical displacements of the interior points 
are computed by 

Eq. 2.2.4 

where [¢R][U R] are the rigid body displacements of the L degrees 

of freedom due to the R degrees of freedom and [¢L][qm] are the 
displacements of the L degrees of freedom relative to the 
displaced base. 

Understanding the physical significance of the matrices [¢R] 
and [¢L] (or, alternatively, {B} and {~}) and learning how to 
compute and manipulate them readily is the essence of learning 
the Craig-Bampton method. 
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2.3 Boundary Node Functions (Constraint Modes), {B} 

The Boundary Node Functions, {B}, are also known as 
Constraint Modes, Boundary Modes or Point Boundary Functions. 
The full set is composed of two sub-matrices, [I] and [¢R]' [I] , 
with R rows and columns, is the identity matrix and is a 
mathematical statement of the obvious in Eq. 2.2.3, viz., the 
physical boundary points displace rigidly during rigid body 
motion. [¢R]' with L rows and R columns, is a transformation 
matrix that relates rigid body physical displacements at the 
interface, U

R 
, to physical displacements of the elastic degrees 

of freedom, U
L 

• 

Allowing motion at the boundary produces the set of Boundary 
Node Functions. To determine [¢R] fix all boundary degrees of 
freedom and limiting consideration to the static problem 

00 00 

(U L =U R =0). Eq. 2.1.3, the governing equation for this case, 
reduces to: 

o Eq. 2.3.1 

Then, release the first degree of freedom in the boundary 
set, UR , and solve for the vector of structural displacements due 
to unit displacement of this point. Next, re-fix the first 
degree of freedom, release the second to unit motion and solve 
for its vector of structural displacements. Continue the 
process, in sequence, for each degree of freedom in the boundary 
set. Thus, the set of boundary displacements, UR , becomes: 

1 0 

o 1 
= [I] Eq. 2.3.2 

which is a column matrix indicating the ordered sequence of unit 
displacements. 

By combining Eqs. 2.2.4 (with qm = 0 because there is no 
elastic deformation of non-boundary points), 2.3.1 and 2.3.2, the 
set of internal displacements, U

L
, may be solved as 

Eq. 2.3.3 
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where 
Eq. 2.3.4 

Note the matrix inversion. This requires a non-singular 
stiffness sub-matrix and is often the source of computer round­
off error. 

The full set of displacements is now formed as: 

Eq. 2.3.5 

where {B} is the matrix of Boundary Node Functions. The sub­
matrix [IJ has R rows and columns and the sub-matrix [¢R] has L 
rows and R columns. 

NASTRAN NOTE: As a practical matter, [¢R]is routinely computed in 
NASTRAN and is data block DM generated by module RBMG3 whenever SUPORT 
bulk data cards are present. In Craig-Bampton analyses, SUPORT cards 
are often used to define the R-set degrees of freedom because the 
"free-free" problem is still solved in dynamics. The SUPORT card 
gives a rigid body eigen-vector at 0 Hz in the direction of specified 
support code. It replaces the lowest frequency in the free-free run 
with this value. If more than 6 degrees of freedom are supported, 
real flexible eigen-vectors are over-written by the generated SUPORT'd 
eigen-vectors. The SUPORT card is used to find eigen-vectors along 
the coordinate axes for rigid body modes that already exist. 

The rigid body modes are embedded in these functions for 
both statically determinant and statically indeterminant 
structures. The columns of [¢R] are rigid body displacements at 
the L degrees of freedom due to a unit motion at one of the R 
degrees of freedom. Note, however, that for a structure with a 
statically determinant boundary (exactly 6 degrees of freedom), 
[B] is just the matrix of 6 rigid body modes at the boundary 
points. For this simple case, rigid body modes can be computed 
from just the locations and orientations of the degrees of 
freedom. 
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2.4 Fixed Base Mode Shapes (Constraint Modes), {~} 

The matrix of Fixed Base Mode Shapes, {~}, is composed of 
two sub-matrices, [0] and [¢L]' The matrix [0], with R rows and 
m columns, is the null matrix and is a mathematical statement of 
the obvious in Eq. 2.2.3, viz., rigid body displacements are 
indeed rigid and not a function of the elastic mode shapes, ~. 

The matrix [¢L]' with L rows and m columns, is a 
transformation matrix that relates modal responses, qm' to 
physical displacements of the elastic degrees of freedom, UL • It 
is determined from the equations of motion with the interface 

00 

degrees of freedom constrained [U R =U R =0] and with no forces 

acting on the interior points [FL=O]. The equation of motion 
for this case is 

00 

Eq. 2.4.1 

iaJot Assume harmonic response (UL =¢L qm e ). Then 

o Eq. 2.4.2 

[ <P

Eq. 2.4.2 represents unforced harmonic motion of the
 
grounded structure. It may be solved using NASTRAN or some other
 
computer program for the eigen-values, [00

0

2
] , and mode shapes,
 

L ]
 • 

The generalized (modal) mass, [~], 1S defined to be 

Eq. 2.4.3 

where [<P
L

] is diagonal since the mode shapes [<P
L

] are normal. The 
matrix [~] is almost always normalized to unity, that is, the 
mode shapes are scaled so that [~] = [IJ. 

The generalized stiffness is defined to be: 

Eq. 2.4.4 

where Lu] llV
0 

2 J is also diagonal. 
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NASTRAN NOTE: In NASTRAN the eigen-vectors [~J are a 
non-standard output but may readily be computed in the READ 
module using appropriate DMAP. The data block is typically 
named PHIL. It is also common to mass normalize [~LJ such 
that. [IlJ= [1J, the identityma.trix. Note that the units of 
the mode shapes are the same as the physical degrees of 

. freedom (inches, meters, radians) and the uni ts on the 
eigen-values are (radians/sec)2. 

Having solved for (00 
2 and ~LI the transformation back to 

physical displacements, U
L

, is accomplished by 

Eq. 2.4.5 

where 

[~L] is the matrix of eigen-vectors called normal mode shapes, 
normal because each mode shape is orthogonal to all others; 
it has L rows and m columns. 

2][(00	 is the matrix of eigen-values and is diagonal. The eigen­
values have units of radians per second squared. The 
natural frequencies of the fixed base structure in Hertz are 

computed as ~(Oo2
/ 2tr . 

[~] is the column vector of generalized (modal) displacements. 
The generalized displacements are dimensionless so all units 
(inches, meters, radians, etc.) are contained in ~L. 
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2.5 The Craig-Bampton Method 

The Craig-Bampton method is based on a re-formulation of the 
equations of motion for a structure from the set of physical 
coordinates to a set of coordinates consisting of physical 
coordinates at some subset of boundary points and modal or 
generalized coordinates at the non-boundary points. Once 
t.rarrsEormed to modal coordinat-es,mode shapes represen-ting h-igher 
frequency responses may be truncated without loss of information. 

To apply the method, transform the coordinate system for the 
equation of motion for a linear, damped elastic structure 

using the Craig-Bampton transformation 

Eq. 2.2.1 

where {B ~} are given in Eq. 2.2.2. This yields equations of 
motion in terms of truncated modal coordinates: 

{ Pp
R 

} Eq. 2.5.1 
L 

Multiply Eq. 2.5.1 by the transpose of the Craig-Bampton 
transformation matrix, {B ~}T, to yield 

Eq. 2.5.2 
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Equation 2.5.2 is the Craig-Bampton equation of motion. 
These equations may be readily solved for a large number of 
practical problems. The transformation is successful because the 
modes become uncoupled from each other, greatly reducing the 
manipulation required to solve the equations. Typically, modal 
displacements and accelerations are computed by numerical 
integration for a given set of initial conditions and forcing 
function time histories. Physical accelerations and 
displacements follow from the Craig-Bampton transformation 
matrix. 

Eq. 2.5.2 may be re-written as: 

M BB
 

{
 MmB 

Eq. 2.5.3 

where 

M 
BB 

- BTMB 

= + + Eq. 2.5.4aM RR 

[M BB is the structural mass matrix reduced to the boundary nodes 
in the same way a Guyan reduction would be done.] 

MBm B T M<I> 

Eq. 2.5.4b 

<I>T MBMmB = 

T 
¢JL [M LR + M LL ¢JR ] Eq. 2. 5 . 4c 
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M mm 

Eq. 2.5.4d 

[M mm is the generalized mass and is almost always set equal to 
the identity matrix.] 

Eq. 2.5.4e 

[KM is the Guyan reduced stiffness matrix and is zero if the 
boundary is statically determinant.] 

= [KRL + 9R
T 

] 9L = a Eq. 2.5.4fK LL 

K,"}{ I}<I>TKBK mB - = .: {~: K u 9R 

= 9L
T 

[K LR + K U 9R ] = a Eq. 2.5. 4g 

<I>TK<I>«: - = {~r {~: ~:}{~}
 
T 2 = 9L K LL 9L = [,u][illo ] Eq. 2.5. 4h 
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[Note that Wo is the natural frequency (radians/second) of the 
fixed base modes.] 

Eq. 2.5.4i 

TNotetnat ( i5the equivaTent viscolis damping defined as t.he 

ratio of damping, c, to critical damping, co; typically ( is 
0.01 but can vary for each mode. The amplitude of the response 
of a structure to a steady state excitation is inversely 
proportional to the damping. Thus, if the damping is doubled, the 
response is halved. The amplitude of the response of a structure 
to a transient excitation is far less dependent on damping and, 
quite often, the difference in response between 1 and 2% damping 
is negligible. ] 

As a practical matter, BTCB, BTCep and epTCB are nearly 
always chosen equal to [0]. Damping of the boundary modes is 
non-standard and cannot be verified by test; only the sub-matrix 
[2~,uwo ] has significance. 

Note from Eqs. 2.5. 4b and 2.5. 4c that [M Bm] = [M mB]T. Eq. 
2.5.4e utilizes the relation found in Eq. 2.3.4. The fact that 
Eqs. 2.5.4f and 2.5.4g are null follows from Eq. 2.3.4. Finally, 
Eqs. 2.5.4d and 2.5.4h follow from Eqs. 2.4.3 and 2.4.4. Recall 
that the matrix ¢L is often mass normalized such that [,u]=[I], 
the identity matrix. 

The generalized mass and stiffness matrices are defined to 
be [M mm] and [Kmm ] , respectively. 

Typically, in the analysis of spacecraft payloads, all 
forces applied to the structure come through the boundary points 
and there are no applied loads to the non-boundary points, i. e., 
only FR is of concern and FL is null. However, in the full­
coupled loads analysis of payload and booster, applied loads do 
act at non-boundary points in the booster and they must be 
considered. 

In summary for most practical problems, the generalized mass 
matrix is normalized, damping is ignored and only boundary forces 
are considered. For these conditions the dynamic equation of 
motion for the Craig-Bampton method given in Eq. 2.5.1 and re­
stated in Eq. 2.5.3 can be stated simply as 

10110/00 2.5.4 
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Eq. 2.5.5 

where is zero for a statically determinant interface.KBB 

NASTRAN Note: A typical NASTRAN DMAP sequence that would be 
required to generate a Craig-Bampton model is shown in 
Appendix B. 
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2.6 Checks on the Craig-Bampton Model 

There are several simple checks that should always be 
applied to Craig-Bampton models to guard against errors. 

2.6.1 Rigid Body Check 

Test the equations o£ motion by enforcing rigid body 
displacements at the boundary degrees of freedom, UR , and 
observing that the non-boundary or elastic freedoms displace 
appropriately. Either by hand for models with a simple boundary 
or by computer for a more complex geometry, construct the matrix 
of six rigid body modes, [R], for the boundary degrees of freedom 
that satisfy the equation: 

Eg. 2.6.1 

where 

lqrt~b~j is the (6,1) vector of pure rigid body displacements and 

rotations for x, y, z, Rx, Ry and Rz motion at some 
convenient point and in global coordinates. 

As a common example, the matrix of rigid body modes for a 
simple 6-degree of freedom interface at point A relative to some 
arbitrary point B is: 

1 0 0 0 sz -6.Y 

0 1 0 -fJ, O· M 

[R] = 
0 

0 

0 

0 

1 

0 

6.Y 

. 1 

-M 

0 

0 

0 
Eg. 2.6.2 

0 0 0 0 1 0 

0 0 0 0 0 1 

where 6.x = X
B

- XA' 6.Y = YB - YA and 6.Z = ZB - ZA' Assuming no 

elastic motion, [qJ=[~m]=O, and applying unit rigid body 

displacement (one inch and one radian) or acceleration (one 
inch/sec/sec or one radian/sec/sec), the resulting boundary 
motion is: 

and [R][I] Eg. 2.6.3 
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A sample DMAP for an equilibrium check is shown in Appendix 
C. 

2.6.2 Rigid Body Mass Matrix 

The Craig-Bampton equation of motion (Eq. 2.5.2) provides 
the (6,6) rigid body mass matrix 

m 0 0 0 mz -my 

0 m 0 -mz 0 mx 

[RY [B™ B][R] = 
0 

0 

0 

-mz 

m 

my 

my 

In 

-mx 

Iry 

0 

I .rz 

Eq. 2.6.4 

mz 0 -mx I yx I yy I yz 

-my mx 0 Iu ·1 zy I zz 

where m is the total mass of the finite element model, x, y and z 
are the distances from the rigid body point to the center of 
mass, and the 'I' terms are the mass moments of inertia and 
products of inertia at the rigid body point. 

2.6.3 Free Eigen-Value Problem 

Since the Craig-Bampton equation of motion (Eq. 2.5.2) 
represents a free, unconstrained structure, it should yield 
natural frequencies and mode shapes for this condition. To check 
this, solve for the first few modes from the eigen-problem 

Eq. 2.6.5 

The results should check the free modes from the original 
finite element model. If the boundary is statically determinate, 
BTKB = 0 and the rigid body modes are zero by definition. 
However, for indeterminate boundaries, the eigen-value problem 
solution can give insight into the boundary modes. 

To note the frequency range represented by the boundary 
functions, it is instructive to remove all fixed base modes and 
solve the eigen-problem: 

Eq. 2.6.6 

Print the eigen-values, l, to see the range. 
10/06/00 2.6.2 
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3.	 Common Applications of Craig-Bampton 
Methodology 

3.1	 Quasi-Static Analysis 

It is often desirable to compute the boundary forces and 
internal displacements of a strue tur-e under a quas i st-at.i.c g­e 

field to check design load cases, set up initial conditions or 
look for potential errors in the analysis. The Craig-Bampton 
method is well suited for this computation. 

Set up the boundary acceleration, [UR]' equal to the 

desired steady static acceleration, [G], as though the structure 
were riding on a multi-degree of freedom elevator. Then 

= [G] is specified, [~m] = 0 because the load is static, 

is ignored, = 0 because [~m] = 0 ,and U R does not 

need to be known since [B T KB]U R = [KBB][U R ] = 0 for this case. 

Consider the Craig-Bampton equation of motion, Eq. 2.5.2. 
The upper portion yields for boundary forces: 

Eq. 3.1.1M BB G 

and the lower portion yields for displacements: 

Eq. 3.1.2 
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3.2 Base-Shake Analyses 

Base shake analyses are very common in structural dynamics 
and are ideally suited to the Craig-Bampton formulation. The 
input driving function in a base shake may be sinusoidal, 
constant, random or transient. Steady state sinusoidal inputs 
are used to simulate a base shake test that is a standard method 

·of testing hardware. Transient inputs are often derived from a 
large coupled loads analysis involving the Shuttle and one or 
more payloads and then, as payload models are refined, the 
interface transients are applied to the component models rather 
than repeating the long and costly coupled loads analysis. The 
base shake analysis has proven to be a very efficient method for 
the iterative analysis of components without re-analyzing the 
entire structure. 

The base-drive problem is characterized by applying known 
accelerations to the boundary and solving for the response of the 
complete structure. The Craig-Bampton formulation is 
particularly well suited for this analysis because the boundary 
is explicitly defined. [F

R 
] is the set of forces that are 

exerted on the boundary and result in the base motions [DR]. It 
should be emphasized that the forces, [F R ] , are usually not known 
initially; only the accelerations at the R degrees of freedom are 
known. The forces [F R ] are really the forces of constraint that 
are required to produce the desired base motion. 

00 

Assume that U R(t) is known either as a transient or as
 
steady state input. Then the Craig-Bampton equation of motion
 
(Eq. 2.5.3) reduces to the equation for generalized response
 

00 0 

j.1 q m (t) + 2(j.1mo q m (t) + j.1m: qm (t) Eq. 3.2.1 

which is the standard form for dynamics equations and can readily 
o 00 

be solved for qm' qm and qm. For the typical base shake 

analysis, FL (t) =0 and the forcing function is just from the base 
00 

acceleration, -MmB UR(t). 

The reactions at the boundary can also be found from Eq. 
2.5.2 as functions of time: 

10/10/00 3.2.1
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3.2 Base-Shake Analyses 

Base shake analyses are verycornmon in structural dynamics 
and are ideally suited to the Craig-Bampton formulation. The 
input driving function in a base shake may be sinusoidal, 
constant, random or transient. Steady state sinusoidal inputs 
are used to simulate a base shake test that is a standard method 
of testing hardware. Transient inputs are often derived from a 

- -largeconpled loads analysis involvin-g the Shuctle and one or 
more payloads and then, as payload models are refined, the 
interface transients are applied to the component models rather 
than repeating the long and costly coupled loads analysis. The 
base shake analysis has proven to be a very efficient method for 
the iterative analysis of components without re-analyzing the 
entire structure. 

The base-drive problem is characterized by applying known 
accelerations to the boundary and solving for the response of the 
complete structure. The Craig-Bampton formulation is 
particularly well suited for this analysis because the boundary 
is explicitly defined. [F

R
] is the set of forces that are 

exerted on the boundary and result in the base motions [UR ] . It 
should be emphasized that the forces, [FR ] , are usually not known 
initially; only the accelerations at the R degrees of freedom are 
known. The forces [F R ] are really the forces of constraint that 
are required to produce the desired base motion. 

Assume that [UR(t)] is known either as a transient or as 

steady state input. Then the Craig-Bampton equation of motion 
(Eq. 2.5.3) reduces to the equation for generalized response 

00 0 00 

Ji q m (t) + 2(Jiwo q m (t) + JiW; qm(t) = - M mB U R (t) + Eq. 3.2.1 

which is the standard form for dynamics equations and can readily 
o 00 

be solved for qm' qm and qm' For the typical base shake 

analysis, FL (t) =0 and the forcing function is just from the base 
00 

acceleration, -MmB U R(t) . 

The reactions at the boundary can also be found from Eq. 
2.5.2 as functions of time: 
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Eq. 3.2.2 

where, as explained in Section 6, eBB is almost always null and 

is zero for statically determinant boundaries. Thus, forK BB 

many problems Eq. 3.2.2 becomes: 

Eq. 3.2.3 

NASTRAN Note: The matrix AlBB is data block MR generated by NASTRAN module 
RBMG4 when SUPORT cards are used. 

The matrix FL(t) is typically null since forces are applied 
only at the boundary. Also, for ease of manipulation Eq. 2.5.2, 
the equation of motion, is re-written to include the boundary 
acceleration as an output as well an input quantity. This 
results in the uncoupled linear equation: 

Eq. 3.2.4 

The physical acceleration response is computed from 

Eq. 3.2.5 

Eq. 3.2.1 is readily solved using numerical integration 
routines (such as NASINT for transient response and SSR for 
steady state response in FLAME) for the modal displacements, qm' 

00 

and modal accelerations, qm' 
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3.3	 Modal Participation Factors and Modal Masses for Base-Shake 
Analyses 

It is very common in the aerospace industry to test 
structures on a shake table. In this test known accelerations 
are applied to the base of a structure. These displacements may 
be sinusoidal (typically a controlled sweep over a given 
frequency range or a sine burst at a given frequency) or random 
CFypiEally with a controlled- energy con t en t ) . Ba-se snakes are 
performed for a variety of reasons. Quite often one goal is to 
measure response levels and frequencies with accelerometers at 
several critical locations and then to use this data as a test 
basis for verifying the finite element model. 

Finite element models can predict eigen-values and eigen­
vectors for a structure that correlate very closely with measured 
test data. However they do not give a clear indication of which 
eigen-vectors will be important contributors in subsequent 
frequency response analysis. Knowing the relative importance of 
each mode in terms of how much mass is moving and in what 
direction is crucial for good design of structures. 

Modal participation factors, which are a property of the 
structure just as generalized mass and stiffness are, can be 
calculated from the mode shapes of the structure. Consider a 
slightly more general form of the Craig-Bampton equation of 
motion for a damped structure on a shaker table, Eq. 3.3.10, 
where the mode shapes are not necessarily mass' normalized: 

00 0	 002
[,u][qm] + 2[,u][;][wo ][ q m] + [,u][W

0 
][ qm] = -[MmB][UR] Eq. 3.3.1 

Note that the coefficients of the generalized motions are 
all diagonal matrices and that [,u] = [¢L f [M LL ][¢L] from Eq. 

2.3.3	 and M mB = ¢L
T 

(MLR+MLL¢R) from Eq. 2.2.7. 

Each individualized modal equation, i, is: 

00 0 T	 00 

q i + 2;j to, q j + to,2 qj = - (11 m, ) ¢iL (M LR + M LL ¢R ) U R Eq. 3.3.2 

where ~L is the row of ¢L associated with the mode i and where 

mil the generalized mass for mode i, equals [¢iL f [M LL ][¢u] . 

Define an L x R matrix of factors, [p], with rows 
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Eq. 3.3.3 

Each row of [p] contains as many terms as there are 
motions for the shaker, or equivalently, as many degrees of 
freedom as are defined in the R-set. In a base shake, motions are 
applied either at only one point or at a number of points which 
are rigidly connected to a single point so the maximum number of 
freeuDIDs in the R~set shou-ld not exceed 6, i.e., t.he p-rob l.ern is 
statically determinant. Each column of [p] contains the factors 
for all the modes associated each degree of freedom in the R-set. 
Each term in [p] is interpreted as a modal participation factor 
since the solution to Eq. 3.3.2 for some specified base motion at 
one degree of freedom will be proportional to the corresponding 
term in [p]. 

An important observation from Eq. 3.3.3 is that, for a 
determinant system that has been mass normalized, the matrix MmB 

is in reality the matrix of modal participation factors. 

Modal participation factors are useful in predicting the 
modal amplification of a sinusoidal input at resonance. Assume a 
shaker motion that is a steady state sinusoidal input at some 

frequency wj and ampli tude U R such that 

00 2 - iliJ;t

and UR =-W·
J 

U R e Eq. 3.3.4 

The equation of motion for each mode becomes: 

00 0 00 

q i + 2~i Wi q i + Wi 2 q i - PiR U R 

Eq. 3.3.5 

Use the method of undetermined coefficients to solve for the 
iWjl generali zed motions. Assume qi =C e , and 

00 
iWjl 

q i =- W/ C e • Substituting these values into Eq , 3.3.4 

and noting that at resonance OJ, =OJj , C ~ [i p" U, 12';,) and 

00 

Eq. 3.3.6 
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where Qi==(l/2~J is the modal amplification of mode i. Eq. 3.3.6 
indicates that, at resonance, the modal acceleration is lagging 
the base acceleration by 90 and that modal acceleration is 
proportional to the product of the modal participation factor, 
modal amplification and the magnitude of the shaker input. 

Modal mass is an analytical measure of how much mass is 
moving in each translational and rotational direction for each 
mode. The total translational mass in each direction equals the 
total analytical mass in that direction. The total rotational 
inertia about each axis equals the total rotational inertia about 
the support point. By scanning the modal mass values in each 
direction, the analyst may accurately decide at what frequency 
the mode shapes may be truncated without losing appreciable model 
accuracy. 

Modal masses are related to the constraint forces. Consider 
the constraint forces previously derived for a base shake 
analysis (Eq. 3.2.2) and note that for a determinant boundary 
[K BB ] == [0]. Then 

[FR] [M BB] [if R] + [M BJ [q",] 

Eq. 3.3.7= [M BB] [if R] + [CM RL + -: M u) ¢J [~m ] 
Neglect the component due to shaker motion and consider only 

the elastic component of [FR ] . The constraint force for each mode 
i becomes: 

Eq. 3.3.8 

The complex amplitude of this force, using Eq. 3.3.5, is: 

= - i M RR Qi U R Eq. 3.3.9 
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where 

Eq.3.3.10• 
is the modal mass matrix for mode l. 

In practice, [M RR ] may be readily computed from the modal 
participation factor, [p~], defined by Eq. 3.3.3. The modal mass 
for mode i is: 

Eq. 3.3.11 

It is interesting to note that summing for all the modes 

(m=L) yields M RR ,a square matrix of size R, where: 

MRR = (MU¢R +MLRY M u (MU¢R +M LR) 

(M RL + ¢/ M U ) (¢R + MuM LR ) 

Eq. 3.3.12 

If there are no masses at the R-set degrees of freedom, 

then M RR =M BB' the rigid body mass matrix wi th respec t to the 
boundary. 

It should be noted that modal participation factors and 
modal masses could be readily computed from the physical model 
using NASTRAN rigid solution 3 with just a few lines of DMAP. 
This is presented in Appendix D. 

As a final note, base shake problems are easily solved using 
matrix manipulation programs such as FLAME. However, if the 
problem is to be solved in NASTRAN, base accelerations are 
typically applied by adding a fictitious seismic mass to the 
R-set degrees of freedom and then applying the appropriate force 
to the base such that the desired accelerations result. 
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3.4 The Load Transformation Matrix (LTM) 

The Load Transformation Matrix (LTM) is used to recover 
physical parameters such as accelerations, displacements, forces 
and stresses from the original finite element model using the 
generalized accelerations and, for redundant interfaces, the 
physical displacements of the boundaries. Although the use of the 
kT~ is standard practice in the aerospace industry, several 
definitions of the LTM exist, depending on company practice and 
the nature of the problem being solved. Swales Aerospace uses an 
LTM based on recovering A-set displacements from the physical 
model; this approach is well-suited forNASTRAN since all element 
forces and stresses are derived from the displacement field. 

3.4.1 Displacement LTM's 

The functional relationship between A-set displacements and 
generalized motions (including boundary displacements) can be 
established as follows. Recall that the primitive equation of 
motion for a structure in finite element analysis is: 

MRL}{SR} + {KRR KRL}{U R} _ {FR} Eq. 2.1.2
M UL K K UL FL
LL LR LL 

where it will be assumed that no interior forces act (FL =0) . 

Thus, 

00 00

[M LR ][UR]+ [M LL ][Ud + [K LR ][UR]+ [K LL ][UL] [0] Eq. 3.4.1 

and 

Eq. 3.4.2 

10106/00 3.4.1 
Craig Barnpton_2.doc. 

28 of 54



Using the Craig-Bampton transformation (Eqs. 2.2.1 and 
2.2.2), 

~L} {~OqOO:} + [1f>R] [.U R][UJ = {[Kzi MLR ] [-Kzi MuJ} {:R 'I' 'I' 

Eq. 3.4.3 

Merge UR and UL to form theA-set displacements: 

00 

Eq. 3.4.4 

Eq 3.4.4 forms the basis for the LTM development. Appendix E 
presents a NASTRAN DMAP sequence for solving this equation. 
Element forces and stresses follow from knowledge of the 
displacement field. The desired components of the LTM are 
requested in the NASTRAN output file. A post-processor then reads 
this data and reformats it appropriately. The LTM has units 
element forces (or stresses) per modal acceleration (or unit 
interface displacement). Typically stress equations are also 
coded in matrix form with units stress per element force (or 
interface displacement). The analytical flow is as follows: 

[Stress(time)] = [Stress/element force] x 
[Element force/modal acceleration (or IF disp)] x 
[Modal acceleration(time) or IF disp(time)] 

Note that quite often only acceleration histories are of 
concern and interface displacements due to redundancy are 
ignored. Stresses induced by these displacements are often small 
enough to be ignored. 
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3.4.2 Interface Force LTM 

Sometimes only the interface forces and net center of 
gravity forces are of interest. Using the upper part of Eq. 
2.5.5, the boundary (interface) forces can be written in terms of 
the Craig-Bampton acceleration and boundary displacements as 

Eq. 3.4.5 

Eq. 3.4.5 can be re-arranged to form a single matrix that 
relates the boundary forces to the Craig-Bampton coordinates as: 

Eq. 3.4.6[M BB M Bm 

The matrix [M BB is the Interface Force LTM thatM Bm K BB ] 

relates Craig-Bampton accelerations and boundary displacements to 
the interface forces. 

The Net CG Acceleration LTM can be created from Eq. 3.4.6 by 
transforming the interface forces to the spacecraft CG (using the 
transformation matrix TB- CG ) and then dividing through by the 6x6 
generalized mass matrix. This can be written as follows: 

Eq. 3.4.7 

Since T[G_B = T CG-B 

[Net CG Aeee!] 

Eq. 3.4.8 

where the transformation matrix TB - ffi may be computed in NASTRAN 
or by hand as shown in Section 3.6. Note that the forces due to 
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the boundary displacements do not contribute to the Net CG 
Acceleration and thus the boundary displacements are not included 
in the formulation even for a redundant interface. 

The Interface Force LTM and the Net CG Accel LTM can be 
combined into a single LTM as follows: 

[Net CG Accelerations J] 
Eq. 3.4.9

[ [InterfaceForcesJ 
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3.5 Application of the Craig-Bampton Method to Modal Synthesis 

The Craig-Bampton method was developed expressly to provide 
a way to couple (synthesize) two or more structures that are 
defined in terms of their modal properties. The two-structure 
case defined here is easily extended to the multi-body case; 
experience has shown, however, that the synthesis of many 
~txuctures should be broken down into a sequence of two-structure 
steps. 

Let the superscripts A and B distinguish the two structures 
that will be coupled. By simple overlay of Eq. 2.1.4, the 
equation of motion for the system is: 

Eq. 3.5.1 

The structures are connected by equating the boundary 
displacements of B to those of A by 

Eq. 3.5.2 

Matrix [e] is the necessary transformation made by the analyst to 
correct for differently ordered boundary points or for different 
coordinate locations. It may be as simple as a·matrix of 
direction cosines or even just the identity matrix. If the 
boundary points are not exactly at the same location, [e] must 
also contain rigid links to put the points together. Usually, 
the matrix for just re-ordering the boundary points looks like: 

0 1 0 0 

1 0 0 0 

[e] = 0 0 0 1 Eq. 3.5.3 

0 0 1 0 
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If there are boundary points in A that do not connect to B, just 
leave a zero column in [e). The matrix [e] will not be square 
for this case. 

The system displacemen.t vector, lU s J, is: 

Eq. 3.5.4 

To transform from the subsystem displacements to this system 
displacement set, we must use: 

I 0 0 0 

0 0¢J: ¢Jt[Us] = [~}]
 0 

0 

I 0 0 0 

¢J: ¢Jt 0 0 
= 

0 0 I 0 

0 0 ¢J: ¢J~ 

0 I 0
 

0 ¢J: ¢J~
 

100 

010 

e 0 0 

001 

UR 
A 

A 
qm 

Eq. 3.5.5
UR

B 

q~ 

Eq. 3.5.6 

Eq. 3.5.7 

The big transformation matrix E is defined by comparing the 
last two equations. In practice, however, the matrix E never has 
to be formed because, when it is used, the results fallout in 
terms of data that has already been computed. 
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Transforming from the component sets for the various sub­
structures to the system set of coordinates results in the 
following system equation of motion: 

Eq. 3.5.8 

where the synthesized mass is 

Eq. 3.5.9 

which expands to 

and where the synthesized damping is 

Eq. 3.5.10 

and where the synthesized system stiffness is 

Eq. 3.5.11 

Eq. 3.5.12 

which expands to 
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o 
(fi (j)~ y Eq. 3.5.13 

o 

and, finally, the synthesized system forcing functions are 

Eq. 3.5.14 

which will not be expanded because it is typically more efficient 
to include the forced degrees of freedom in the LTM. 
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3.6 Reduction of a Redundant Interface to a Single Point 

The Craig-Bampton equation of motion for a structure (or 
sub-structure) on a 6 degree of freedom boundary and unity 
generalized mass with no internal loads is given by: 

00 

Eq. 3.2.1 

00 

where CUR] represents motion of the interface degrees of 
freedom. If this set of interface DOFs is indeterminant, it may 
be advantageous under certain circumstances to tie these points 
together for application of a single or "average" set of 
interface motions. For example, when solving for the steady state 
response of a structure with an indeterminant boundary, it is 
easier to apply the motions to a single point and it may be even 
more appropriate since the mounting of a structure to a shaker 
table rigidizes the interface. As another example, it may be 
easier to visualize the excitation of several redundant degrees 
of freedom by first averaging the excitation in each djrectiort 
and then applying them to one point that is rigidly connected to 
the others. The single point need not be (and typically isn't) 
one of the original boundary points. Obviously any elasticity in 
the interface (such as ovalling of a ring) is lost, as the 
interface points are all rigidly connected to the new point. 
Therefore, this technique should be used only when the interface 
is stiff relative to the rest of the structure or when stiffness 
is to be added to the interface. 

Consider a structure with three boundary points, B1, B2 and 
B3, each with 6 DOFs for a total of 18 interface DOFs. These 
points are to be replaced by the single point A. The coordinates 
of point Bi are {Xbi, Ybi, Zbi, RXBi, RYBi, RZBi} and the 
coordinates of point A are {XA, YA, ZA, RXA, RYA, RZA}. Let the 
displacements of points Bi be {Uix, Uiy, Uiz, Uijx, Uijy, Uijz} 
and the displacements of point A be {ux, uy, uz, ujx, ujy, ujz}. 
Further, let the set of all displacements at the boundary be [U] 
where [U] is an 18 x n matrix (n is the number of time steps) and 
let the set of displacements at point A be [u] where [u] is a 6 x 
n matrix. The displacement vectors [U] and [u] are related by the 
transformation matrix [C] that may be determined from simple 
geometric considerations. This relation is given as: 

[U] = [C][u] Eq. 3.6.1a 

or, in expanded notation for any given point in time: 
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Utt 1 0 0 0 1121 - DoYl 

Ul y 0 1 0 -1121 0 ~l 
Ul z 
Ul ex 

0 

0 

0 

0 

1 

0 

DoYl 

1 

-~l 

0 

0 

0 
Ul/ry 

0 0 0 0 1 0 
-Ul

fk 0 0 0 0 0 1 
U2 x 1 0 0 0 1122 -DoY2 U x 

U2 y 0 1 0 - 1122 0 ~2 U y 

U2 
Z 0 0 1 DoY2 -~2 0 U z = in; 0 0 0 1 0 0 Uex 

in; 0 0 0 0 1 0 u/ry 

in; 0 0 0 0 0 1 Ufk 

U3 x 1 0 0 0 D.Z3 -DoY3 

U3 y 0 1 0 -D.Z3 0 ~3 

U3: 0 0 1 DoY3 -~3 0 

U3fJx 0 0 0 1 0 0 

us; 0 0 0 0 1 0 
Eq. 3.6.1b 

us; 0 0 0 0 0 1 

where 

~i = X Bi - X A 

Do~ = YBi - YA 

L1Z i = ZBi - ZA Eq. 3.6.2 

The pattern of Eq. 3.6.1b may be repeated for any arbitrary 
number of redundant interface points. 

To reduce the number of interface DOFs in Eq. 3.2.1 replace 
00 00 

[UR] with [C][u]and solve as usual for modal responses. Note, 
however, that when transforming modal responses back to physical 
responses using the Craig-Bampton transformation (Eq. 2.2.1), the 
matrix of Boundary Mode Functions, [B], must be replaced with the 
matrix lB'J where lB'J=[B][C]. 
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It is also interesting to note that the 6x6 rigid body mass 
matrix of the structure about point A may be computed from the 

product [eY [MBB][e]. 

To obtain the "average H motion [u] of a single point in each 
direction when motions [U] act at several boundary points, one 
cannot simply average the motions of all the boundary points in 
each direction. Continuing with the example above, the correct 
approach is to determine the transformation matrix [T] such that: 

[u] = [THu] Eq. 3.6.3 

where [T], a 6 x 18 array, is the 'inverse' of [C]. Begin by 

multiplying Eq. 3.6.1a by [e]T the transpose of [C]. ThenI 

[eY [u] = [eY [eHu] Eq. 3.6.4 

where [C]T [C] is a square matrix with a defined inverse. It 
follows that 

[u] = {reV [en-I [eF [u] = [THu] Eq. 3.6.5 

so that the desired inverse transformation is 

Eq. 3.6.6 
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APPENDIX A 

GUYAN REDUCTION 

Guyan Reduction is a methodology used to reduce the number 
of deg:n::!es of freedom in a large finite element model, typically 
generated for static analyses, to some much smaller number of 
freedoms that can be much more readily solved for dynamic 
analyses. In NASTRAN this reduced set of freedoms is called the 
ASET or analysis set. 

Consider the following equation in which the 1 space 
represents the omitted dof's that are assumed to carry no force 
and the 2 space represents the ASET dof's: 

Eq. A.I 

Note that the ASET contains both boundary and interior
 
freedoms. Then
 

Eq. A.2 

Eq. A.3 

Eq. A.4 

Eq. A.S 

where is the ASET stiffness. 

Note that Eq. A.3 relates the omitted freedoms to the ASET 
freedoms and gives rise to the following transformation 

Eq. A.6 

where 
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This is equivalent to modal reduction. Consider the eigen­
value problem for the overall structure and transform the 
displacements as above: 

K<t> = M <t> A Eq. A.7 

TT K T <t> = TT M T <t> A Eq. A.8 

K*<t> = M*<t>A Eq. A.9 

[T1 = [T1 = X 2 =If" k" f'Jx, IJ[~ ;J;]x, K 22 12
Ik 21 k 22 

Eq. A.I0 

The corresponding mass matrix may be derived from the laws 
of motion: 

1 = M 
12][~l] Eq. A.II 

M 22 x2 

Applying the transformation in Eq. A.6 and noting that the 
matrix T is not a function of time, the acceleration matrix may 
be transformed as follows: 

[;] [x, ] ·Eq. A.12 

Eq. A.13 

where 1 has forces both in 1 and 2 space. 

Finally, transform the forces as follows 
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--

12 = [~ I] 1 = [Tj I][M" M" f'J x, = M 22 x2 Eq. A.14 
M 21 M2.2. I 

where 

M 22 = [Tj 
I][M U Eq. A.15M"lnIM 21 M 22 
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APPENDIX B
 

NASTRAN DMAP for Generating a Craig-Bampton Model. (This 
DMAP is for MSC Version 64. It assumes that the mode shapes are 
mass normalized and that the boundary degrees of freedom are 
specified on SUPORT cards) . 

SOL 3,0
 
ALTER 416,417
 
$ Fixed Interface Modal Model
 

1.	 READ KLL,MLL, "EED,USET,CASECC/LAMA,PHIL,MI,OEIGS/ 
MODES/S,N,NEIGV $ 

2. OFP	 LAMA,OEIGS// $ 
3. UMERGE	 USET,PHIL,/PHILA/A/L/R $ 
4. PARAM	 // NOP/V,N,MRP=-l $ 
5. MATGEN	 ,/AMR/1/REACT $ 
6. DIAGONAL	 MI/MIDIAG/SQUARE $ 
7. EQUIV	 MIDIAG,MI/MRP $ 
8. UMERGE	 USET,DM,AMR/PHIRB/A/L/R $ 
9. PARAM	 //C,N,ADD/V,N,NORPN/V,N,REACT/V,N,NEIGV $ 

10.	 MATGEN ,/MP/6/NORPN/REACT/NEIGV $ 
11.	 MERGE PHIRB"PHILA, ,MP,/PHIX/1 $ 
12.	 MPYAD MLL,DM,MLR/MTP1////2 $ 
13.	 MPYAD PHIL,MTP1,/MHB/1///2 $ 
14.	 TRNSP MHB/MBH $ 
15.	 MERGE MR,MHB,MBH,MI,MP,/MRRGN $ 
16.	 MATPRN MI,MRRGN// $ 
17.	 SPMYAD PHIL,KLL,PHIL" ,/KW/3////1 $ 
18.	 MATPRN KW. 
19.	 DIAGONAL KW/KWW/SQUARE $ 
20.	 MATPRN KWW/ / $ 
21.	 MPYAD KLR,DM,KRR/KBB/1///2 $ 
22.	 MATPRN KBB// $ 
23.	 MERGE KBB, "KWW,MP,/KRRGN $ 
24.	 MATPRN KRRGN// $ 
25.	 OUTPUT4 KRRGN,MRRGN,PHIX, ,//-1/21 $
 

ENDALTER
 

·NOTES: 

1.	 READ (Extract eigen-values from a real symmetric matrix) 
solves Eq. 2.4.2. It takes the constrained mass (MLL) and 
stiffness arrays (KLL) and calculates the cantilevered modes 
(PHIL) and eigen-values (LAMA). It also computes the modal 
mass matrix, MI, which is given as [] in Eq. 2.4.3. NEIGV 
is the number of eigen-vectors found. 

2.	 OFP (Output file processor) prints LAMA, the real eigenvalue 
table, and OEIGS, the real eigen-value summary table. 
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3.	 UMERGE (Merge two matrices based on USET) forms PHILA, the 
fixed base mode shape matrix ~ defined by Eq. 2.2.2. The 
mode shapes are brought to A-set size by merging zeros into 
the boundary coordinates. . 

4.	 PARAM (Parameter processor) defines the parameter MRP used 
by EQUIV in step 7. 

5.	 MATGEN (Matrix generator) generates AMR, an RxR identity 
matrix. 

6.	 DIAGONAL (Strip diagonal from matrix) forms MIDIAG, a square 
matrix	 whose diagonal terms are taken from the matrix MI. 
(MIDIAG and MI are equivalent; MIDIAG has small off­
diagonal terms that are set to zero in MI) . 

7.	 EQUIV (Data block name equivalence) makes MIDIAG and MI
 
equivalent.
 

8.	 UMERGE forms PHIRB, the Boundary Mode Function matrix [B] 
defined by Eq. 2.2.2. It merges the identity matrix AMR with 
the rigid body transformation matrix DM that is defined as 
¢R	 in Eq. 2. 3 . 4 . 

9. PARAM defines the parameter NORPN to be the sum of REACT 
(the number of SUPORT degrees of freedom) and NEIGV (the 
number of eigen-vectors retained in the Craig-Bampton 
analysis) . 

10.	 MATGEN forms a column matrix, MP, with (R+m) rows. The first 
R rows contain zeros and the remaining m rows contain ones. 

11.	 MERGE forms PHIX, the [Ax{R+m)] Craig-Bampton transformation 
matrix, [B ~], defined by Eq. 2.2.1. Note that the order 
of the A rows is in the NASTRAN sequencing order with the L 
and	 R freedoms inter-dispersed. 

12.	 MPYAD (Matrix multiply and add) forms [M LR + M LL ¢R]' part of 
Eq. 2.5.4c. 

13.	 MPYAD forms [M rnB] (Eq. 2.5. 4c) . 

14.	 TRNSP (Matrix transpose) forms MBm, the transpose of MmE. 

15.	 MERGE forms MRRGN, the full Craig-Bampton mass matrix
 
defined in Eq. 2.5.3.
 

16.	 MATPRN prints MI and MRRGN. 
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17.	 SMPYAD (Matrix series multiply and add) computed Wo 
2 from 

Eq. 2.4.4 and calls it KW. 

18.	 MATPRN prints the matrix of eigen-values KW. 

19.	 DIAGONAL forms KWW, a square matrix whose diagonal terms are 
taken from matrix KW. (KW and KWW are equivalent; KW has 
small off-diagonal terms that are set to zero in KWW) . 

20.	 MATPRN prints matrix KWW. 

21.	 MPYAD computes KBB, as given by Eq. 2.5.4e. 

22.	 MATPRN prints matrix KBB. 

23.	 MERGE forms KRRGN, the full Craig-Bampton stiffness matrix 
defined by Eq. 2.5.3. 

24.	 MATPRN prints matrix KRRGN. 

25.	 OUTPUT4 writes matrices KRRGN, MRRGN and PRIX onto Fortran 
unit 21. 
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APPENDIX C
 

NASTRAN DMAP for Computing
 
an Equilibrium Check on the Free-Free Stiffness Matrix
 

(This DMAP is for MSC Version 64) .
 

Appendix C presents the NASTRAN DMAP sequence for performing 
an equlTnJ-rium check on tne stiffness m~ft.rices cfa: physica:l ­
model. The purpose of this check is to test for grounding in a 
structure that will generate erroneous internal forces. The 
check shown is for the free-free stiffness (F-set) matrix but the 
approach is applicable to the other sets as well. The rigid body 
transformation matrix KRBF multiplies the stiffness matrix KFF. 
This product is then normalized to its maximum value to yield the 
array KRBFN. Large terms in KRB indicate grounding; the location 
of the ground is shown by KRBFN. 

SOL 3,0 
ALTER 125 

1 VECPLOT"BGPDT,EQEXIN,CSTM, ,/RBGLOBAL/V,Y,MPFPNT=0//4 $ 
2 VEC USET/VRB/G/F/COMP $ 
3 PARTN RBGLOBAL,VRB,/RBFSET, ,,/+1 $ 
4 TRNSP RBFSET/RBTF $ 
5 MPYAD KFF,RBTF,/KRB/ $ 
6 MPYAD RBFSET,KRB,/KRBF/ $ 
7 NORM KRB/KRBFN/ $ 
8 MATPRN KRBF// $ 
9 MATGPR GPL,USET,SIL,KRBFN//F///1.-2 $ 

ENDALTER 

NOTES: 

1.	 VECPLOT generates RBGLOBAL, the global rigid body matrix 
with 6 rows and g columns where each row represents the 
rigid body motion of all grid points about point MPFPNT. The 
default value for MPFPNT is grid point 0 that is interpreted 
in NASTRAN as the origin of the basic coordinate system. 
Another point about which rigid body motion is to be taken 
may be specified on a PARAM card in the Bulk Data deck. The 
format of this card is: PARAM, MPFPNT, Grid ID. Note that 
VECPLOT is commonly used in other DMAP routines and is 
therefore shown above apart from the rest of the modal mass 
DMAP. 
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2.	 VEC partitions USET into VRB to reduce the g-set into the 
f-set. 

3.	 PARTN partitions RBGLOBAL (6 x g) into RBFSET (6 x f) based 
on VRB. 

4.	 TRNSP transposes RBFSET into RBTF. 

5.	 MPYAD multiplies KFF, the free~free stiffness matrix, by 
RBTF, the f x 6 rigid body matrix, to form KRB, an f x 6 
matrix. 

6.	 MPYAD multiplies RBFSET, the 6 x f rigid body matrix, by 
KRB, f x 6, to yield a 6 x 6 matrix, KRBF. This matrix is 
key to understanding if a structure is grounded. A "large" 
term in this array indicates grounding. 

7.	 NORM normalizes KRB by the maximum value of the array to 
yield KRBFN. 

8.	 MATPRN prints KRBF, the 6 x 6 matrix. 

9.	 MATGPR prints KRBFN (f x 6) with associated grid point ID 
number. Only those values larger than 0.01 are printed. 
This matrix identifies the location of the ground. 

**************************** NOTE **************************** 

An equilibrium check of the F-set stiffness matrix has been 
described. It is highly recommended that equilibrium checks also 
be performed on the G-set (global DOFs) , the N-set (those DOFs 
Not taken out by MPCs) and the T-set (equivalent to the A-set 
when dynamic reduction is not involved). An example of this DMAP 
package for MSC Version 64 is as shown: 

ALTER 115 
$$ G-SET CHECK 
VECPLOT, ,BGPDT,EQEXIN,CSTM, ,/RBGL/V,Y,MPFPNT=0//4 $ 
TRNSP RBGL/RBGLT $ 
MPYAD KGG,RBGLT,/KPHIG/ $ 
MATGPR GPL,USET,SIL,KPHIG//G///1.-S $ 
ALTER 121 
$$ N-SET CHECK - CHECKS FOR PROBLEMS WITH MPCs 
VEC USET/VGM/G/M/COMP $ 
PARTN RBGL,VGM,/, ,RBNN,/l $ 
TRNSP RBNN/RBNNT $ 
MPYAD KNN,RBNNT,/KPHIN/ $ 
MATGPR GPL,USET,SIL,KPHIN//N///1.-S $ 
ALTER 126 
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$$ F-SET CHECK 
VEC USET/VGF/G/F/COMP $ 
PARTN RBGL,VGF,/RBFF" ,/1 $ 
TRNSP RBFF/RBFFT $ 
MPYAD KFF,RBFFT,/KPHIF/ $ 
DIAGONAL KFF/KFFD/SQUARE/-1. $ 
MPYAD KFFD,KPHIF,/KPHIFN/ $ 
MATGPR GPL,US~T,SIL,KPHIFN//F///1.-5 $ 
$$ A-SET (T-SET) CHECK 
ALTER 174 
VEC USET/VGT/G/T/COMP $ 
PARTN RBGL,VGT,/RBTT" ,/1 $ 
TRNSP RBTT/RBTTT $ 
MPYAD KTT,RBTTT,/KPHIT/ $ 
DIAGONAL KTT/KTTD/SQUARE/-1. $ 
MPYAD KTTD,KPHIT,/KPHITN/ $ 
MATGPR GPL,USET,SIL,KPHITN//T///1.-5 $ 
ENDALTER 
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APPENDIX D 

NASTRAN DMAP for Computing
 
Modal Participation Factors and Modal Weights
 

(This DMAP is for MSC Version 64) .
 

SOL 3/0 
ALTER 125 

1 VECPLOT, ,BGPDT/EQEXIN/CSTM, ,/RBGL/V/Y/MPFPNT=0//4 $ 

$$$ COMPUTE MODAL PARTICIPATION AND MODAL WEIGHT 
2 VEC USET/VGT/G/T/COMP $ 
3 PARTN RBGL/VGT,/RBASET, / //1 $ 
4 MPYAD RBASET/MAA,/RBMAA/ $ 
5 MPYAD RBMAA/PHILA,/RBMPHI/ $ 
6 DIAGONAL RBMPHI/MPHI2/WHOLE/2. $ 
7 ADD MPHI2,/EFWGHT/(386.4, .0) $ 
8 MATGEN ,/IDP/1/NEIGV $ 
9 DIAGONAL IDP/CIDP/COLUMN/1. $ 

10 MPYAD EFWGHT/CIDP,/WTSUM/ $ 
11 MATPRT EFWGHT// $ 
12 MATPRT WTSUM// $ 

ENDALTER 

NOTES: 

1.	 VECPLOT generates RBGL, the global rigid body matrix with 6 
rows and g columns where each row represents the rigid body 
motion of all grid points about point MPFPNT. The default 
value for MPFPNT is grid point 0 that is interpreted in 
NASTRAN as the origin of the basic coordinate system. 
Another point about which rigid body motion is to be taken· 
may be specified on a PARAM card in the Bulk Data deck. The 
format of this card is: PARAM, MPFPNT, Grid ID. Note that 
VECPLOT is commonly used in other DMAP routines and is 
therefore shown apart from the rest of the modal mass DMAP. 

2.	 VEC partitions USET into VGT to reduce the g-set into the 
t-set. For practical purposes the t-set is equivalent to the 
a-set. 

3.	 PARTN partitions RBGL (6 x g) into RBASET (6 x a) based on 
VGT. 

4.	 MPYAD multiplies the rigid body a-set matrix, RBASET, by the 
a-set mass matrix, MAA (a x a), to produce RBMAA (6 x a) . 
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5.	 MPYAD multiplies RBMAA (6 x a) by elastic modes, PHILA (a x 
modes) to produce RBMPHI, 6 x modes, the matrix of Modal 
Participation Factors. 

6.	 DIAGONAL squares all the terms in RMBPHI to produce MPHI2. 

7.	 ADD scales MPHI2 by 386.4 to produce EFWGHT, the matrix of
 
modal weights (6 x modes) .
 

8.	 MATGEN produces IDP, an n x n identity matrix, where n is
 
NEIGV, the number of modes specified on the EIGR card in
 
Bulk Data.
 

9.	 DIAGONAL strips the diagonal from IDP (n x n) to produce
 
CIDP (n x 1).
 

10.	 MPYAD multiplies EFWGHT (6 x n) by CIDP (n x 1) to produce 
WTSUM (6 x 1), the sum of the modal weights for all modes in 
each direction. 

11.	 MATPRT prints EFWGHT. 

12.	 MATPRT prints WTSUM. 
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APPENDIX E 

NASTRAN DMAP for Generating an LTM 
(This DMAP is for MSC Version 64) . 

SOL 3,0 
ALTER 416,417 

$$ This DMAP outputs data blocks OEF2 and OEF4 from 
$$ which a post-processor (such as the Fortran program 
$$ LTMGEN) can generate an LTM. 
$$ 
$$ The DMAP from APPENDIX B for generating a Craig­
$$ Bampton model should be inserted here since data 
$$ blocks PHIL, MP and PHIRB which were generated there 
$$ are also of required here. 
$$ 
$$ LTM DMAP 
$$ 
$$ ACCELERATION DATA RECOVERY 
$$ 

1 MPYAD MLL,DM,MLR/MIF/ $
 
2 ADD MIF,/AMIF/(-l.,O.) $
 
3 MPYAD MLL,PHIL,/LFOR//-1 $
 
4 MERGE AMIF, ,LFOR, ,MP,/LFORA/1 $
 
5 FBS LLL, ,LFORA/LDISPA/1/1/ $
 
6 UMERGE USET,LDISPA,/ADISP/A/L/R $
 
7 SDR1 USET"ADISP" ,GO,GM"" /PHIZ2,,, l/REIG $
 
8 OUTPUT4 PHIZ2" ,,//-1/24 $
 
9 SDR2 CASECC,CSTM,MPT,DIT,EQEXIN,SIL,ETT, ,BGPDT,LAMA"
 

PHIZ2,EST,/OPG2,OQG2,OPHIZ2,OES2,OEF2,PUGV2/REIG 
10	 OFP OEF2// $
 

$$ OUTPUT TABLES LISTED BELOW
 
$$
 
$$ OQG2 SPC FORCES DUE TO ACCELERATIONS
 
$$ OPHIZ - DISPLACEMENTS DUE TO ACCELERATIONS
 
$$ OEF2 ELEMENT FORCES DUE TO ACCELERATIONS
 
$$
 
$$ REDUNDANT FORCES
 
$$
 

11 SDR1 USET, ,PHIRB" ,GO,GM, ,KFS, ,/PHIZ4, ,/l/REIG $ 
12 SDR2 CASECC,CSTM,MPT,DIT,EQEXIN,SIL,ETT, , BGPDT, LAMA, , 

PHIZ4,EST,/OPG4,OQG4,OPHIZ4,OES4,OEF4,PUGV4/REIG $ 
13	 OFP OEF4// $
 

$$
 
$$ OUTPUT TABLES LISTED BELOW
 
$$
 
$$ OEF4 - ELEMENT FORCES DUE TO I/F DISPLACEMENTS
 
$$ OQG4 - SPC FORCES DUE TO I/F DISPLACEMENTS
 
$$ OPHIZ4 - DISPLACEMENTS DUE TO I/F DISPLACEMENTS
 
ENDALTER
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NOTES: 

1. MPYAD generates data block MIF that equals [M LR +M LL ¢JR] in 
Eq. 2.5.4c. The terms in MIF are related to InterFace Mass. 
Its size is LxR. 

;2.	 ADD generates data block AMIF, t.he negative of MIF. 

3.	 MPYAD generates data block LFOR that equals [M LL ¢JL] in Eq. 
2.4.3. Its size is Lxm. The terms in LFOR are related to the 
L-set forces. 

4.	 MERGE generates data block LFORA, the matrix [AMIF LFOR]. 
Its size is Lx(R+m) . 

5.	 FBS (Matrix Forward/Backward Substitution) generates data 
block LDISPA that equals ~- K~ (M LR + M U ¢JR)J - K~ M u. ¢JJ which 
are two of the sub-matrices in Eq. 3.4.4 . The terms in 
LDISPA are related to the L-set displacements. 

6.	 UMERGE takes the 1x2 matrix LDISPA and generates the 2x2 
matrix ADISP by placing zeros in row 1. The terms in ADISP 
are related to the A-set displacements. 

7.	 SDR1 is a module that generates data block PHIZ2, which is 
the displacement matrix ADISP blown-up to' G-set size. 

8.	 OUTPUT4 writes the matrix PHIZ2 onto Fortran unit 24. 

9.	 SDR2 is a module which outputs several data blocks (G-set
 
size) related to forces, stresses and displacements that
 
result from unit modal accelerations.
 

10.	 OFP outputs data block OEF2, the element forces due to modal 
accelerations. 

11.	 SDR1 is a module that generates data block PHIZ4, which 1S 

the support vector matrix PHIRB blown-up to G-set size. It 
contains the rigid body constraint modes. 

12.SDR2 is a module which outputs several data blocks (G-set 
size) related to forces, stresses and displacements that 
result from redundant interface forces. 

13.	 OFP outputs data block OEF4, the element forces due to the 
redundant interface forces. 
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Note that the following symbolic relationships apply to this 
DMAP sequence. 

where 

[~K;:,' [M u< + MU 

0 

~J¢RJ -K;lMuf/JL 

= [~K;:,' (AMIF) 
0 

-«: (LFOR) ~M] 

= [- K;:,' (~FORA) D~] 

= [LD~SPA D~] 

= [ADISP PHIRB] 

Note also for this DMAP sequence the G-set displacement 
matrix, [U G ] , may be expressed symbolically as 

00 

00 

[PHIZ2 PHIZ 4] q m 

UR 

Finally note that the data blocks OEF2 and OEF4 
the LTM and are written into the NASTRAN output data 

constitute 
file. 
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Typically, a post-processor (such as the Fortran program LTMGEN) 
reads this file and re-formats it appropriately. 
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