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Overview

Objective: Outline an approach to modeling pneumatic envelopes, with
applications to balloons constructed from flat sheets of thin film

1. Applications of balloon technology

2. Design problem for a statically determinate balloon
(UMN 1950s, J. Smalley 1960-70s)

(a) ‘Designing’ a spherical balloon

(b) Axisymmetric membrane with o; = O: natural shape balloon
Zero-pressure: P(z) =bz= P(0) =0

Superpressure: P(z) = bz+ po = P(0) = po >0
(c) Pumpkin balloon (Smalley 1971, Yajima 1998, Schur 1998)



Overview (continued)

3. Model Development (including elasticity)
(a) Previous work on large balloons*
(b) Geometric features: folds, wrinkling, lobes, wings.

(c) Variational formulation of analytical problem

I. Periodic lobes, no strain (FB, AIAA J 1996)

ii. Explicit internal fold (FB/Collier, ASME JAM 2000)
lii. Virtual fold (FB/Brakke, AIAA J 1998)
iv. Energy relaxation (Collier, 2000 GW doctoral thesis)

v. Ascent shapes+constraints (FB/Collier, AIAA J 2001)
(d) Numerical model

I. EMsolver - implemented in Matlab

li. Surface Evolver (K. Brakke, C) - most features implemented

*W. Schur, applied tension field to balloons, AIAA-91-3668-CP



Overview (continued)

. Benchmark Comparisons with ABACUS

(a) Strained zero-pressure natural shape at float,
EMsolver (with virtual fold) vs. ABACUS with tension field
(collaboration with W. Schur/WFF/PSL)

(b) Strained spherical containment vessel for a neutrino detector,
EMsolver with energy relaxation vs. ABAQUS with tension field
(collaboration with L. Cadonati, Borexino Project, Princeton U)

. EMsolver applied to nonstandard problems

(@) Nonuniqueness of equilibrium shapes: ascent shapes of zero-pressure
natural shape designs with and without lobes.

(b) Pumpkin balloon (with tendon/film mismatch, collaboration with W. Schur)
. Concluding remarks

This approach could be applied to other super-light membrane struc-
tures (e.g., solar sails, gossamer spacecratft, etc.)



Applications of Balloon Technology

e Terrestrial science
o Zero-pressure balloons (NASA's standard large scientific balloon)
o Super-pressure balloons (NASA'’s Ultra Long Duration Balloon - ULDB)
o Containment vessel for particle detectors
e Extraterrestrial science
(Mars, Venus, Uranus, Neptune, Saturn, Jupiter, lo, Titan, ... )
o Solar Montegolfier balloons
o Parachutes
o Solar sails

o Space inflatables and gossamer structures



Designing a Spherical Balloon

Known Quantities Units

Buoyancy (float altitude) N/m® by = g(pa—Pg)
Payload N L

Film weight density N/m? Wy

Load tendon weight density N/m W
Number of tendons (gores) Ny

Find radius R so that Archimedes’ Principle is satisfied:

Total Lift = Weight of Balloon System (1)

b- 21R® = wy - 4TR® + Wt - ngTiR+ L

There is exactly one positive solution of (1)

Donel!



Equilibrium for an axisymmetric membrane

Balance of Forces on a Patch A with generator (r(s),0,z(s))
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f(s,@) = —p(s)b(s @) —w(s)k

p = bz+ po - hydrostatic pressure, b - buoyancy
Om(S)t(S) - meridional contact force (O, - meridional stress resultant)

0¢(S)ex() - circumferential contact force (O - hoop stress resultant)



Natural-Shape Equations (0¢c = 0, UMN, 19505s)

Further developement and enhancements (J. Smalley, 1960-70s).

D)= (@) = 0= > (ront) — oeer(@) +1.

Let T = 210 Om(S)

ODEs Boundary Conditions
0 = -2mr(wsnb+p)/T, | 6(0) = 03,
T = 2Trwcos9, T(0) = L/cos8f,
Z = cos6, z2(0) = 0,
= siné. r0) = 0.

Auxiliary Conditions
6(6976) - —%T[
re%,¢) = 0
[r(s),z(s),T(s),0(s)] & (8%,¢) are found via a shooting method

Archimedes satisfied: bV = Wsjm+ L



Natural-Shape Profiles, oc = 0, T # const.

120 —

T
_. (@ W=W,, pO:O
__® W=WAW W, pO:O Pa

f
__ (c)w=w, W W, po:40 Pa

f

100

80 -

60

a0t

20+

o Zero-pressure balloons. Typical missions are several days. ZP-balloons
are open at base and need significant ballast to maintain altitude (a)-(b)

o Super-pressure balloon. Add sufficient pressure so that day/night volume
changes are reduced. (c)

o Available thin films: not strong enough to contain the pressure, too heavy,
too expensive

o Use a doubly curved gore with very strong tendons = pumpkin shape.



Observations and Model Assumptions

o Linear stress-strain constitutive law
o Isotropic material (E-Youngs modulus, V-Poisson'’s ratio)

o Constant strain model (T € Sgef «— T €Y95)

o Fine wrinkling via energy relaxation - facets are taut, slack, wrinkled
o Energy relaxation allows a tension field solution

o Folds can be used to describe distribution of excess material.

o Load tendons behave like sticky linearly elastic strings

o Shapes are characterized by large deformations but small strains.

o Hydrostatic pressure is shape dependent



Variational Principle for a Strained Balloon

ForS € C,

Minimize: Eroa(S) =Ep+Ef +E+S + St
Subjectto: V =V

(closed system, P(z) = bz+ po, po is obtained from Lagrange multiplier)

Er Total energy

Ep hydrostatic pressure potential

E; gravitational potential energy due to film weight

E: gravitational potential energy due to tendon weight
S  strain energy of tendons

S¢  strain energy of film



Energy Terms

Hydrostatic Pressure: Ep = — /\/ pdv = —/S(%bzz—i— poz)k- dS,

Film Weight: Ef = /WdeA
S

Ny by
Tendon Weight: E; = Zl w;zds
& /o

TKe(|vi]2—1)2.

Mg ba . .
Tendon Strain: § = Z/ W.(s) ds, W.(s)
= /0

Film Strain: Sy :/Wf(G)dA, Wi(G) = 1s: G;
Q
G = 3(C—1) - Green strain, C = F'F - Cauchy strain, and F - def. grad.

Second Piola-Kirchoff stress tensor

S(G) = 1t_EV2 (G+vCof(GT)).

Fine wrinkling: replace Wf by its relaxation W;‘ leading to a Tension Field
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Comparison of EMsolver (virtual fold) with ABACUS (tension field)
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Strained lobed ascent shapes (multiple solutions for same loading)
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The Pumpkin Balloon
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Background on the Pumpkin Balloon

o J. Smalley coined the term pumpkin balloon. Extensibility of the film is
used to achieve the doubly curved pumpkin gore (early 1970s).

o CNES built several small pumpkin balloons, cutting half-gore panels with
extra material (M. Rougeron, CNES/France, mid-late 1970s)

o Sewing techniques to gather material at gore seams
(N. Yajima, Japan, 1998, see Adv. in Space Res., 2000).

o NASA/ULDB - structural lack-of-fit (shorten tendons) + material properties
(W. Schur, PSL/WFF, 1998, see AIAA-99-1526).
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Strained Pumpkin Balloon
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Principal stresses for superpresure natural-shaped and pumpkin balloons.

(a) “Meridional’

120

(a)-(b) 2.9% slackness; (c)-(d) 2.2% tendon shortening.

(joint work with W. Schur)
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(b) “Hoop” stresses - slack tendons

I
50

I
100 150

120 T T
a,~center, natural, tendon short
.. 0,~seam
. uzfcenler, pumpkin, tendon short
100k _._ 0,~seam
80 weree
g -
= 60 .
40 T
20
0 I I
0 50 100 150

(c) “Meridional” stresses - tendon shortening
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Borexino Containment Vessel (joint work with L. Cadonati)

Borexino Design 2200 8" Thorn EMI PMTs

Stainless Steel
Sphere 13.7m O

Nylon Sphere
8.5m O

Muon veto:
200 outward-

pointing PMTs

100 ton
fiducial volume

Nylon film
Rn barrier

Scintill ator

Buf f er

x Holding Strings :
Stainless Steel Water Tank Steel Shielding Plates
18m O 8m x 8m x 10cm and 4m x 4m x 4cm

17



Borexino Containment Vessel (joint work with L. Cadonati)
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Borexino (continued)

Schematic Reference/lnitial Configs.
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ABACUS displacements (b # 0, 0.1% density difference)
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Future Balloon Research

o Pumpkin - Deployment problems, new features observed during ascent
and launch (stress raisers?), optimal gore design.

o Validation - compare actual strain measurements to EMsolver predictions.

o Aerodynamic loading of a strained balloon (link computational fluid dy-
namics and structural analysis).

o Apply our approach to space inflatables, solar sails & gossamer structures.
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