Finite Element Solution of Fluid-Structure Interaction Problems

Gordon C. Everstine Naval Surface Warfare Center, Carderock Div. Bethesda, Maryland 20817 18 May 2000 EverstineGC@nswccd.navy.mil

Fluid-Structure Interaction

Exterior Problems: Vibrations, Radiation and Scattering, Shock Response

Interior Problems: Acoustic Cavities, Piping Systems

Structural Acoustics

Problems: Radiation and Scattering (Time-Harmonic and Transient) Fluid-Loaded Vibrations Acoustic Cavities (e.g., Tanks, Pumps) Fluid-Filled Piping System Dynamics

Approaches: Finite Element Finite Element/Boundary Element Finite Element/Infinite Element Doubly Asymptotic Approximations (DAA) Retarded Potential Integral Equation (Transient)

Large-Scale Fluid-Structure Modeling Approaches

- Structure
 - Finite elements
- Fluid
 - Boundary elements
 - Finite elements with absorbing boundary
 - Infinite elements
 - ?c impedance
 - Doubly asymptotic approximations (shock)
 - Retarded potential integral equation (transient)

Structural-Acoustic Analogy

General Equation: $\nabla^2 \phi + g = a \ddot{\phi} + b \dot{\phi}$

Navier's Equation of Elasticity:

$$\frac{\lambda + 2G}{G}u_{,xx} + u_{,yy} + u_{,zz} + \frac{\lambda + G}{G}(v_{,xy} + w_{,xz}) + \frac{1}{G}f_x = \frac{\rho}{G}\ddot{u}$$

where $\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)}$ (Lamé constant)

Analogy: $u = \phi$, $v \equiv w \equiv 0$, $\lambda = -G \Rightarrow$

 G_e arbitrary, $E_e = \alpha G_e$, $\rho_e = aG_e$, $\alpha = \begin{cases} 10^{-5} & (2-D) \\ 10^{20} & (3-D) \end{cases}$

 $F_x = f_x V = G_e g V - (G_e b V) \dot{\phi}$ (load + dashpot)

Fluid-Structure Interaction Equations STRUCTURE: $M \ddot{u} + B \dot{u} + K u = -Ap + f_1$

COMPRESSIBLE FLUID: $\nabla^2 p = \ddot{p}/c^2$, $\partial p/\partial n = -\rho \ddot{u}_n$

 $Q\ddot{p} + Hp = \rho A^{T}\ddot{u}$

COUPLED EQ:

 $\begin{bmatrix} M & O \\ -\rho A^{T} & Q \end{bmatrix} \begin{cases} \ddot{u} \\ \ddot{p} \end{cases} + \begin{bmatrix} B & O \\ O & C \end{bmatrix} \begin{cases} \dot{u} \\ \dot{p} \end{cases} + \begin{bmatrix} K & A \\ O & H \end{bmatrix} \begin{cases} u \\ p \end{cases} = \begin{cases} f_{1} \\ f_{2} \end{cases}$

SYMMETRIC POTENTIAL FORMULATION: $q = \int p dt$

$$\begin{bmatrix} M & O \\ O & Q \end{bmatrix} \begin{bmatrix} \ddot{u} \\ \ddot{q} \end{bmatrix} + \begin{bmatrix} B & A \\ A^T & C \end{bmatrix} \begin{bmatrix} \dot{u} \\ \dot{q} \end{bmatrix} + \begin{bmatrix} K & O \\ O & H \end{bmatrix} \begin{bmatrix} u \\ q \end{bmatrix} = \begin{bmatrix} f_1 \\ g_2 \end{bmatrix}$$

Fluid Finite Elements

• Pressure Formulation

 $-\,E_{e}$ = 10^{20}G_{e},\,\rho_{e}=G_{e}/c^{2},\,G_{e} arbitrary

- Direct input of areas in K and M matrices
- Symmetric Potential Formulation
 - u_z represents velocity potential
 - -New unknown: $q=\int p dt$ (velocity potential)

$$-G_e = -1/\rho, E_e = -10^{20}/\rho, \rho_e = -1/(\rho c^2)$$

- Direct input of areas in B (damping) matrix

Finite Element Formulations of FSI

	Displacement	Pressure	Velo. Pot.
Fluid unknown	Total disp.	ps	q _s = ∫p _s dt
Fluid DOF/pt.	3	1	1
Coef. matrices	Symmetric	Nonsymmetric	Symmetric
Spurious modes	Yes	No	No
F-S interface cond.	MPC	Matrix entry	Matrix entry

+ 3-variable formulations

Displacement Formulation

- Fundamental unknown: fluid displacement (3 DOF/point)
- Model fluid domain with elastic F.E. (e.g., elastic solids in 3-D, membranes in 2-D)
- Any coordinate systems; constrain rotations (DOF 456)
- Material properties (3-D): $G_e \approx 0 \implies E_e = (6\epsilon)\rho c^2$, $\nu_e = \frac{1}{2} \epsilon$, $\rho_e = \rho$, where $\epsilon = 10^{-4}$
- Boundary conditions:
 - Free surface: natural B.C.
 - Rigid wall: $u_n=0$ (SPC or MPC)
 - Accelerating boundary: u_n continuous (MPC), slip
- Real and complex modes, frequency and transient response
- 3 DOF/point, spurious modes

Displacement Method Mode Shapes

Helmholtz Integral Equations

Matrix Formulation of Fluid-Structure Problem

Structure: Zv = F - GAp $Z = (-\omega^2 M + i\omega B + K)/(i\omega)$ Fluid: $Ep = Cv_n + p_i$ F-S Transformation: $F = GF_n$, $v_n = G^T v$ Coupled Equations: $(E+CG^TZ^{-1}GA)p = CG^TZ^{-1}F + p_i$ Velocity: $v_n = G^TZ^{-1}F - G^TZ^{-1}GAp$

Spherical Shell With Sector Drive

Added Mass by Boundary Elements

Helmholtz equation:

Boundary element equation:

Added mass matrix:

 $\oint_{S} \left(p \frac{\partial D}{\partial n} - D \frac{\partial p}{\partial n} \right) dS = \frac{p}{2}$ $D = \frac{e^{-ikr}}{4-r}$ (Green's function) $Ep = Cv_n$ $M_a = GAE^{-1} \left(\frac{C}{i\omega}\right) G^T$ Eigenproblem: $(M + M_a)\ddot{u} + Ku = 0$

Frequencies of Submerged Cylindrical Shell

Mode	N	Μ	L	F.E.	B.E.	Approx.
1	1	0		0.00	0.00	0.00
2	2	1		1.13	1.13	1.11
3	0		1	1.63	1.44	1.38
4	3	1		1.79	1.81	1.77
5	4	1		3.61	3.67	3.57
6	1		1	4.44	4.26	4.22
7	4	3		4.81	4.82	4.70
8	3	3		4.94	4.93	4.82
9	5	1		6.31	6.38	6.18
10	5	3		6.83	6.86	6.67

N=circumferential, M=longitudinal, L=radial (end)

Low Frequency F.E. Piping Model

- Beam model for pipe
- 1-D acoustic fluid model for fluid (rods)
- Two sets of coincident grid points
- Pipe and fluid have same transverse motion
- Elbow flexibility factors are used
- Adjusted fluid bulk modulus for fluid in elastic pipes E=B/[1+BD/E_st)]
- Arbitrary geometry, inputs, outputs
- Applicable below first lobar mode

Planar Piping System: Free End Response

Needs

- Link between CAD model and FE model
- Infinite elements
- Meshing (e.g., between hull and outer fluid FE surface
- Modeling difficulties (e.g., joints, damping, materials, mounts)
- Error estimation and adaptive meshing

References

- G.C. Everstine, "Structural Analogies for Scalar Field Problems," *Int. J. Num. Meth. in Engrg.*, Vol. 17, No. 3, pp. 471-476 (March 1981).
- G.C. Everstine, "A Symmetric Potential Formulation for Fluid-Structure Interaction," *J. Sound and Vibration*, Vol. 79, No. 1, pp. 157-160 (Nov. 8, 1981).
- G.C. Everstine, "Dynamic Analysis of Fluid-Filled Piping Systems Using Finite Element Techniques," *J. Pressure Vessel Technology*, Vol. 108, No. 1, pp. 57-61 (Feb. 1986).
- G.C. Everstine and F.M. Henderson, "Coupled Finite Element/Boundary Element Approach for Fluid-Structure Interaction," *J. Acoust. Soc. Amer.*, Vol. 87, No. 5, pp. 1938-1947 (May 1990).
- G.C. Everstine, "Prediction of Low Frequency Vibrational Frequencies of Submerged Structures," *J. Vibration and Acoustics*, Vol. 13, No. 2, pp. 187-191 (April 1991).
- G.C. Everstine, "Finite Element Formulations of Structural Acoustics Problems," *Computers and Structures*, Vol. 65, No. 3, pp. 307-321 (1997).

http://ocean.dt.navy.mil/pubs/_pubs.htm