Thermal-Structural Analysis of Sunshield Membranes

John Johnston
Keith Parrish
NASA Goddard Space Flight Center

2003 FEMCI Workshop
Future IR Space Telescopes

• There are several large infrared (IR) space telescopes planned for the coming decades...
 – James Webb Space Telescope (JWST)
 – Single Aperture Far Infrared (SAFIR)

• The JWST consists of a cryogenic telescope and instruments, a room temperature spacecraft, and a deployable sunshield.

• The sunshield provides passive radiative cooling to cryogenic operating temperatures, stability at operating temperature, and stray light control.

Reference Concept (NASA)

Current Design (TRW/Ball)
Sunshields for Large Space Telescopes

- Typical deployable sunshield concepts consists of:
 - Multiple layers of thin-film membranes
 - Deployable booms to support the film layers
 - Membrane management hardware to position and tension the films:
 - Ladder structures
 - Constant force springs
 - Container for the stowed structure

NASA Reference Concept:
- Overall size = 30 m x 15 m
- Total Mass = 200 kg

Thin film layers:
- Material: Kapton
- Thickness = 0.0005-0.001 in
- Global stresses ~ 10 psi
- Local stresses ~ 100 psi
Sunshield Temperatures

- Mean temperatures will vary widely from layer-to-layer:
 - Sun-side film layer ~ 400 K
 - Cold-side film layer ~ 100 K.

- In-plane temperature variations within the film layers are predicted to be large (up to 100 K) due to:
 - Greater view to deep space at the edges than at the center
 - Presence of the room temperature spacecraft at the center

- Membrane layers must be maintained in their nominal geometry (both spacing and flatness) when subject to thermal strain effects due to both layer-to-layer temperature differences and in-plane temperature gradients.
Accommodating Thermal Strains

- Post-deployment structural performance of the sunshield is a concern since it may impact observatory thermal performance.

- A constant-force preloading scheme is typically implemented to accommodate thermal expansion/contraction of the membrane layers and is effective in compensating for uniform temperature changes and layer-to-layer bulk temperature differences.

- Even with constant-force preloading, large radial temperature gradients could lead to a loss of tensile preload within the film layers:
 - Results from over-contraction of the cold film perimeter relative to the warmer center of the film.
 - The formation of a slack region would result if the tensile preload drops to zero.

- Reduced preload or slackness in the films is a concern since any resulting sagging of the films could lead to “thermal shortcuting” if adjacent membrane layers come into contact.
Objective

• The objective was to study the effects of temperature on the structural behavior of preloaded sunshield film layers utilizing recent developments in finite element modeling of partially wrinkled thin-film membranes.

• The problem of a single film layer from the NASA reference concept JWST sunshield is used to demonstrate the analysis process and study sensitivities to:
 – In-plane temperature variations
 – Film preload level
Thermal-Structural Analytical Process

• Multi-step, sequentially coupled thermal-structural analysis:

1. Thermal analysis predicts temperatures

2. Temperature mapping used to interface thermal and structural models

3. Structural analysis predicts displacements/stresses/etc. due to combination of mechanical preloads and prescribed temperatures
Thermal Analysis

- Thermal analysis performed using:
 - Thermal Synthesis System (TSS) to calculate radiation interchange factors
 - SINDA85 to solve for model nodal temperatures

- Sunshield cold-side (layer 6) temperatures:
 - Tmean = 73.9 K
 - Tmax = 111.7 K
 - Tmin = 44.3 K
 - In-plane gradient = 67.4 K
Temperature Mapping

- Since thermal and structural models typically have dissimilar meshes, it is necessary to perform a “mapping” of the temperatures from the thermal model mesh to the structural model mesh.

- Temperature mapping approaches:
 - Pair corresponding thermal and structural model nodes, then prescribe these temperatures in a steady-state heat transfer analysis performed using the FEM.
 - Fit a function to the thermal results, then map this function to the structural model mesh (i.e. MATLAB “griddata” function)
Structural Analysis

• The structural analysis was performed using ABAQUS.

• The baseline analysis consisted of three nonlinear static analysis steps:
 1. Apply constant force spring preloads, Specify uniform temperature = 294 K (room temperature)
 2. Specify uniform temperature = 74 K (mean cold-side temperature)
 3. Specify mapped temperature distribution (mean temperature + gradient)
Thin-Film Modeling

• Thin-film membrane layer modeled using membrane elements (M3D3) in conjunction with a wrinkling material model:
 – Material model is a finite element implementation of Stein-Hedgepeth membrane wrinkling theory.

• Membrane element stiffness iteratively modified to account for the effects of wrinkling:
 – Element state determined using a mixed stress-strain criteria
 – Stiffness matrix formulation based on the element state
 – Approach predicts stress distributions corrected for wrinkling and slackness as well as wrinkled/slack regions, but not wrinkling details.

• Shell element overlay provides small artificial stiffness:
 – Allows slack regions to become taut when preload is increased despite zero in-plane stiffness in slack membrane elements
 – Studies showed minimal effect on the membrane stresses

• Additional numerical stabilization provided by ABAQUS *STABILIZE
Finite Element Model

- **Mesh:**
 - 5146 Nodes
 - 19800 Elements

- **Components:**
 - Film (M3D3 membrane elements)
 - Corner reinforcements (STRI3 shell elements)
 - Spreader Bars (B31 beam elements)
 - Constant Force Springs (B31 beam elements)

- Central cut-out in film representative of attachment to spacecraft

- Assumed uniform, temperature independent CTE for all materials (2.0E-5 /K)
FEM – Load & Constraints

• Loads:
 – 2 CFS per corner
 – 14.25 N total per corner
 – Applied constant force preload using ABAQUS *PRE-TENSION SECTION

• Constraints:
 – Fixed at spreader bars (interface with deployment booms)
 – Pinned around the perimeter of central cut-out
Uniform Temperature = 294 K

<table>
<thead>
<tr>
<th>Preload (N)</th>
<th>Temperature (K)</th>
<th>Stresses (Pa)</th>
<th>Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tmean Tmax-Tmin</td>
<td>Major - Max</td>
<td>Minor - Max</td>
</tr>
<tr>
<td>14.25</td>
<td>294</td>
<td>1.30E+06</td>
<td>7.07E+04</td>
</tr>
<tr>
<td>14.25</td>
<td>74</td>
<td>1.20E+07</td>
<td>7.59E+04</td>
</tr>
<tr>
<td>14.25</td>
<td>74 67</td>
<td>9.90E+06</td>
<td>0.00E+00</td>
</tr>
</tbody>
</table>
Thermal Strains

Uniform Temperature = 74 K

Mapped Temperature Distribution (Tmean = 74 K, Tmax-Tmin= 67 K)

Difference (i.e. thermal strain due to radial gradient)
Uniform Temperature = 74 K

<table>
<thead>
<tr>
<th>Preload (N)</th>
<th>Temperature (K)</th>
<th>Tmax-Tmin</th>
<th>Stresses (Pa)</th>
<th>Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tmean</td>
<td>Tmax-Tmin</td>
<td>Major - Max</td>
<td>Minor - Min</td>
</tr>
<tr>
<td>14.25</td>
<td>294</td>
<td>0</td>
<td>1.30E+06</td>
<td>7.07E+04</td>
</tr>
<tr>
<td>14.25</td>
<td>74</td>
<td>0</td>
<td>1.20E+07</td>
<td>7.59E+04</td>
</tr>
<tr>
<td>14.25</td>
<td>74</td>
<td>67</td>
<td>9.90E+06</td>
<td>0.00E+00</td>
</tr>
</tbody>
</table>
Mapped Temperature Distribution

(Tmean = 74 K, Tmax-Tmin = 67 K)

<table>
<thead>
<tr>
<th>Preload (N)</th>
<th>Temperature (K)</th>
<th>Stresses (Pa)</th>
<th>Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tmean</td>
<td>Tmax-Tmin</td>
<td>Major - Max</td>
</tr>
<tr>
<td>14.25</td>
<td>294</td>
<td>0</td>
<td>1.30E+06</td>
</tr>
<tr>
<td>14.25</td>
<td>74</td>
<td>0</td>
<td>1.20E+07</td>
</tr>
<tr>
<td>14.25</td>
<td>74</td>
<td>67</td>
<td>9.90E+06</td>
</tr>
</tbody>
</table>
Effects of Varying Temperature Gradient

<table>
<thead>
<tr>
<th>Support Case</th>
<th>Preload (N)</th>
<th>Temperature (K)</th>
<th>Stresses (Pa)</th>
<th>Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tmean Tmax-Tmin</td>
<td>Major - Max</td>
<td>Major - Min</td>
</tr>
<tr>
<td>B</td>
<td>14.25</td>
<td>294 0</td>
<td>1.30E+06 7.07E+04 1.27E+05 0.00E+00</td>
<td>0.00 0.33 0.67</td>
</tr>
<tr>
<td>B</td>
<td>14.25</td>
<td>74 10</td>
<td>1.17E+07 1.05E+04 2.23E+05 0.00E+00</td>
<td>0.00 0.41 0.59</td>
</tr>
<tr>
<td>B</td>
<td>14.25</td>
<td>74 20</td>
<td>1.14E+07 3.34E+04 2.58E+05 0.00E+00</td>
<td>0.01 0.53 0.46</td>
</tr>
<tr>
<td>B</td>
<td>14.25</td>
<td>74 30</td>
<td>1.11E+07 0.00E+00 3.28E+05 0.00E+00</td>
<td>0.03 0.61 0.35</td>
</tr>
<tr>
<td>B</td>
<td>14.25</td>
<td>74 40</td>
<td>1.04E+07 0.00E+00 4.51E+05 0.00E+00</td>
<td>0.06 0.64 0.30</td>
</tr>
<tr>
<td>B</td>
<td>14.25</td>
<td>74 50</td>
<td>1.01E+07 0.00E+00 5.06E+05 0.00E+00</td>
<td>0.08 0.65 0.27</td>
</tr>
<tr>
<td>B</td>
<td>14.25</td>
<td>74 60</td>
<td>9.82E+06 0.00E+00 5.57E+05 0.00E+00</td>
<td>0.11 0.65 0.24</td>
</tr>
<tr>
<td>B</td>
<td>14.25</td>
<td>74 67</td>
<td>9.90E+06 0.00E+00 5.44E+05 0.00E+00</td>
<td>0.15 0.63 0.22</td>
</tr>
<tr>
<td>B</td>
<td>14.25</td>
<td>74 70</td>
<td>9.53E+06 0.00E+00 6.04E+05 0.00E+00</td>
<td>0.17 0.62 0.21</td>
</tr>
<tr>
<td>B</td>
<td>14.25</td>
<td>74 80</td>
<td>9.23E+06 0.00E+00 6.45E+05 0.00E+00</td>
<td>0.21 0.60 0.19</td>
</tr>
<tr>
<td>B</td>
<td>14.25</td>
<td>74 90</td>
<td>9.23E+06 0.00E+00 6.45E+05 0.00E+00</td>
<td>0.25 0.57 0.18</td>
</tr>
<tr>
<td>B</td>
<td>14.25</td>
<td>74 100</td>
<td>8.94E+06 0.00E+00 6.87E+05 0.00E+00</td>
<td>0.27 0.56 0.17</td>
</tr>
</tbody>
</table>
Effects of Varying Preload

![Graph showing the effects of varying preload on the fraction of film surface area.](image)

<table>
<thead>
<tr>
<th>Support Case</th>
<th>Preload (N)</th>
<th>Temperature (K)</th>
<th>Stresses (Pa)</th>
<th>Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tmean</td>
<td>Tmax-Tmin</td>
<td>Major - Max</td>
</tr>
<tr>
<td>B</td>
<td>14.25</td>
<td>294</td>
<td>0</td>
<td>1.30E+06</td>
</tr>
<tr>
<td>B</td>
<td>14.25</td>
<td>74</td>
<td>67</td>
<td>9.90E+06</td>
</tr>
<tr>
<td>B</td>
<td>28.5</td>
<td>74</td>
<td>67</td>
<td>1.01E+07</td>
</tr>
<tr>
<td>B</td>
<td>42.75</td>
<td>74</td>
<td>67</td>
<td>1.02E+07</td>
</tr>
<tr>
<td>B</td>
<td>57</td>
<td>74</td>
<td>67</td>
<td>1.03E+07</td>
</tr>
<tr>
<td>B</td>
<td>71.25</td>
<td>74</td>
<td>67</td>
<td>1.04E+07</td>
</tr>
<tr>
<td>B</td>
<td>85.5</td>
<td>74</td>
<td>67</td>
<td>1.05E+07</td>
</tr>
<tr>
<td>B</td>
<td>99.75</td>
<td>74</td>
<td>67</td>
<td>1.05E+07</td>
</tr>
<tr>
<td>B</td>
<td>114</td>
<td>74</td>
<td>67</td>
<td>1.13E+07</td>
</tr>
</tbody>
</table>
Summary

• Results from an analysis of the cold-side film layer of the NASA reference concept JWST sunshield were used to demonstrate a thermal-structural analysis approach and provide insight into the response of the membrane to thermo-mechanical loading.

• For the problem considered, the film was shown to develop slack regions when subject to a large in-plane temperature gradient. Subsequent analyses showed that the slack region could be eliminated by increasing the magnitude of the mechanical preload by a factor of four.

• These studies demonstrate the importance of including thermal effects in thin-film membrane structural analyses when significant temperature variations are expected within the structure.

• Topics for future study include: thermal model refinement, temperature-dependent material properties, mismatches in coefficient of thermal expansion, and additional approaches to film tensioning.