Optomechanical Design and Analysis of Adaptive Optical Systems using FEA and Optical Design Software

Victor Genberg, Keith Doyle, Gregory Michels
Sigmadyne, Inc.
803 West Avenue, Rochester, NY

Phone: 585-235-7460
email: genberg@sigmadyne.com
Integrated Optomechanical Analysis

Thermal Analysis

- Steady-State & Transient
- conduction
- convection
- radiation

Structural Analysis

- static & dynamic
- linear / nonlinear
- stress
- displacement
- shock & vibration
- thermo-elastic
- inertial
- buckling

Optical Analysis

- Interpolated
- Temperatures

Interface Programs
- Zernike Fitting
- Interpolation

Optical Performance Metrics

- Wavefront Analysis
- Point Spread Function
- Modulation Transfer Function
- Encircled Energy
Integrated OptoMechanical Analysis

Example Telescope: Must pass structural distortions to optical model for analysis
Zernike Polynomials

- Polynomial series with two real variables, \(r \) and \(\theta \)

\[
\Delta Z(r, \theta) = A_{00} + \sum_{n=2}^{\infty} A_{n0} R_n^0(r) + \sum_{n=1}^{\infty} \sum_{m=1}^{n} R_n^m [A_{nm} \cos(m\theta) + B_{nm} \sin(m\theta)]
\]

\[
R_n^m(r) = \sum_{s=0}^{\frac{n-m}{2}} (-1)^s \frac{(n-s)!}{s! \left(\frac{n+m}{2} - s\right)! \left(\frac{n-m}{2} - s\right)!} r^{(n-2s)}
\]

- Standard Zernike polynomials (See Born & Wolf, *Principles of Optics*)
 - use as many terms as required to represent the data

- Fringe Zernike polynomials are a subset of the Standard Zernikes
 - include higher-order symmetrical terms (\(r^{10} \) & \(r^{12} \)) that are more important to wavefront propagation; eliminates the higher-order azimuthal terms

\(r \) - dimensionless normalized radius
\(\theta \) - polar angle
\(A_{nm} \) & \(B_{nm} \) - polynomial coefficients
ZernikeSurfaces

Bias/Piston: 1

Tilt: \(r \cos(\theta) / r \sin(\theta) \)

Power/Defocus: \(2r^2 - 1 \)

Pri-Astigmatism
\(2r^2 \cos(2\theta) / 2r^2 \sin(2\theta) \)
Zernike Surfaces

Pri-Coma:
\[(3r^3-2r)\cos(\theta) / (3r^3-2r)\sin(\theta)\]

Pri-Trefoil:
\[r^3\cos(3\theta) / r^3\sin(3\theta)\]

Pri-Spherical:
\[6r^4-6r^2+1\]

Sec-Astigmatism:
\[(4r^4-3r^2)\cos(2\theta) / (4r^4-3r^2)\sin(2\theta)\]
Integrated OptoMechanical Analysis - *Current Technology*

- FEA code (Nastran) => surface deformations
- SigFit => Fit Zernikes to FEA data, output in Optics format
- Optics code (CodeV) => read Zernikes, calculate system optical response

Disadvantages
- requires optical engineer in the loop
- analysis process turnaround is slow
- can not use in FEA optimization loop
Why Adaptive Optical System

- Optical surfaces are deformed and moved based on measured or anticipated information to compensate for unwanted disturbances.
- Uses
 - Fabrication & assembly errors in deployable systems
 - Thermoelastic & humidity distortion
 - Atmospheric disturbance in ground based telescopes
 - Vibrations & dynamic disturbances
Adaptive Simulation Method - Conceptual

- Adaptive Performance Can Be Simulated With Finite Element Analysis
 - Generate two sets of deformation predictions
 - Uncorrected disturbances
 - Actuator influences
 - Solve for actuator inputs, \(x_1, x_2, x_3 \ldots x_n \), to minimize surface error, \(E \)

- If focus compensation exists elsewhere, terms like \(2\rho^2 - 1 \) or \(\Delta R \) can be added as *augment* actuators
Adaptive Analysis - *Current Technology*

- FEA code => surface distortions
- FEA code => actuator influence functions
- SigFit => read FEA data, calculate actuator force to correct that surface
- Optics code => read SigFit data, calculate system response

- Disadvantages
 - Error correction for that single surface, *not* system response
 - Not correcting other optical surfaces effects
 - Can not combine multiple adaptive surfaces

- To correct system level effects, the system wavefront error must be related back to the adaptive optic as an equivalent surface distortion.
Integrated System Analysis - *New Technology*

- Optics code => system response sensitivity due to unit Zernikes at each surface
- FEA code => surface distortions of all surfaces
- FEA code => influence functions for all actuators (if adaptive)

- SigFit => calculate system response
 - fit Zernikes to FEA distortions of each surface
 - multiply by system sensitivities to get system response

- SigFit => calculate corrected system response (if adaptive)
 - fit Zernikes to FEA influence functions
 - calculate actuator forces to minimize system error

- Advantage
 - speeds up analysis turn around
 - using system level performance generates superior designs
Integrated System Analysis - *New Technology*

- Optical surfaces: $n = 1$ to S
 Number adaptive surfaces: $t = 1$ to T
- Zernike in/surface: $j = 1$ to Z
 Zernike out/system: $k = 1$ to Z
- Load case number: $i = 1$ to L
 Actuator number: $m = 1$ to M

- Sensitivity matrix = Zernike out (k) for Zernike in (j) at surface (n) = S_{kj}^n
- Disturbance fit = fit each load case (i) with Zernike (j) at surface (n) = C_{ji}^n
- Actuator influence = fit with Zernike (j) at surface (t) = B_{jm}^t
- System response = Zernike (k) at output location (0) for load case (i) = Z_{ki}^0
Integrated System Analysis - *New Technology*

- System level response = Zernikes at output (ie Exit Pupil)

\[Z_{ki}^0 = \sum_{n}^{S} S_{kj}^n C_{ji}^n \]

Where \(S\) is the Zernike sensitivities from Code V

\(S_{kj}^n\) = matrix of size \((Z \times Z \times N)\)

and \(C\) is the Zernike fit to FEA deformations for each load case

\(C_{ji}^n\) = matrix of size \((Z \times L \times N)\)

Resulting \(Z^o\) is reported along with Surface RMS and Peak-Valley

Output a visualization file showing net response at output location
Integrated System Analysis - Adaptive - *New Technology*

- System level response at Output location due to Actuators

\[
U_{km} = \sum_{t}^{T} S_{kj} \cdot B_{jm}^t
\]

Where B is the Zernike fit to Actuator influence functions

\(B_{jm}^t = \text{matrix of size } (Z \times M \times T) \)

Define system level error \(E \) as

\[
E = \sum_{k}^{Z} w_k \left(Z_{ki} - \sum_{m}^{M} U_{km} A_m \right)^2
\]
Minimize System Error with respect to Actuator forces

\[\frac{dE}{dA_q} = \sum_{k} Z_k 2 \left(Z_{ki} - \sum_{m} U_{km} A_m \right) U_{kq} = 0 \]

Solve resulting linear system for A

\[[H] \{ A \} = \{ F \} \]

\[H_{qm} = \sum_{k} w_k U_{qk} U_{km} \]

\[F_q = -\sum_{k} w_k Z_k U_{kq} \]
Integrated System Analysis - Example

Example: Telescope

Finite Element Model

Optical Model
Integrated System Analysis - Example

Adaptive PM (*9 force actuators in red, 3 displacement actuators in blue*)
Integrated System Analysis - Example

- Load Case: 1g along optical axis
- Added 5λ of astigmatism on SM (represents a thermal distortion)

- PM sits on 3 points (displacement actuators)
 - 1g distortion = 4.62λ RMS
 - mostly trefoil = 12.5λ

- SM sits on 3 edge points (with 5λ astigmatism added)
 - 1g distortion = 2.18λ RMS
 - trefoil = 2.0λ
 - added astigmatism = 5.0λ

- Note: Surface distortions have a doubling effect on reflected wavefront error
Integrated System Analysis - Example

<table>
<thead>
<tr>
<th>No Correction</th>
<th>PM Correction</th>
<th>Sys Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM RMS= 4.62\lambda</td>
<td>PM RMS= 0.11\lambda</td>
<td>Sys RMS= 2.18\lambda</td>
</tr>
<tr>
<td>SM RMS= 2.18\lambda</td>
<td>SM RMS= 2.18\lambda</td>
<td>SM RMS= 2.18\lambda</td>
</tr>
<tr>
<td>Sys RMS= 11.25\lambda</td>
<td>Sys RMS= 4.31\lambda</td>
<td>Sys RMS= 0.23\lambda</td>
</tr>
</tbody>
</table>
Integrated System Analysis - Example

• Correcting PM disturbance only
 – Adaptive PM reduced PM error
 – Did not correct SM error, so SM effects still in System error

• Correcting System response
 – Adaptive PM corrected PM error and the SM error
 – Resulting System error greatly reduced
Integrated System Analysis - Example: Compare Sys Response with CodeV

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Code-V</td>
<td>SigFit</td>
<td>Code-V</td>
<td>SigFit</td>
<td>Code-V</td>
<td>SigFit</td>
<td>Code-V</td>
<td>SigFit</td>
</tr>
<tr>
<td>2</td>
<td>-0.01</td>
<td>0.00</td>
<td>-0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.02</td>
<td>-0.02</td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>-1.75</td>
<td>-1.75</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.01</td>
<td>-0.01</td>
</tr>
<tr>
<td>5</td>
<td>9.91</td>
<td>9.91</td>
<td>0.04</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>0.00</td>
<td>0.00</td>
<td>0.24</td>
<td>0.24</td>
<td>0.00</td>
<td>0.00</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>8</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>1.85</td>
<td>1.85</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>10</td>
<td>-29.09</td>
<td>-29.10</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>11</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.75</td>
<td>-0.76</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>12</td>
<td>-0.02</td>
<td>-0.02</td>
<td>0.57</td>
<td>0.57</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>13</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>14</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.03</td>
<td>-0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>16</td>
<td>-0.43</td>
<td>-0.43</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>17</td>
<td>0.00</td>
<td>0.00</td>
<td>0.16</td>
<td>0.16</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-0.11</td>
<td>-0.11</td>
</tr>
<tr>
<td>18</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.10</td>
<td>0.10</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>19</td>
<td>5.18</td>
<td>5.19</td>
<td>-0.04</td>
<td>-0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>RMS</td>
<td>11.23</td>
<td>11.25</td>
<td>0.22</td>
</tr>
</tbody>
</table>
Summary

• SigFit’s new System Level Analysis allows more rapid turn around of analyses
 – Optics engineer needed up front to get sensitivities
• Design and analysis under control of structural engineer
 – Can optimize on system level response
 – Reduces the need to budget each optic separately
• Improves and simplifies system level analyses
 – Can correct multiple surfaces’ effects with single adaptive optic
 – Can combine multiple adaptive optics to correct system response
 – More accurate & useful than correcting a single surface’s effect
• User features
 – Visualization plots of System Level Response
• Future development
 – Add System Level Response to SigFit dynamics
 – Add System Level Response to SigFit optimization equations for Nastran
References

