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JWST Overview
• The James Webb Space Telescope (JWST) is an orbiting 

infrared observatory that will take the place of the HST. 
– Mass:   5400 kg (12,000 lbs) 
– Diameter of primary mirror:   ~6.5 m (21.3 ft) 
– Optical resolution:   ~0.1 arc-seconds 
– Wavelength coverage:   0.6 - 28 microns 
– Orbit:   L2 halo orbit (1.5 million km from Earth)
– Operating Temperature:   <50 K (-370 °F) 

• Major primary mirror innovations
– Lightweight optics 
– Folding segmented mirror 
– Cryogenic actuators & mirror control 

• Above information courtesy of JWST project web page (http://ngst.gsfc.nasa.gov)
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NASTRAN Model
• Model logically consists 

of 6 sections
– Spacecraft
– Deployable Tower
– PM Backplane
– PM Segments 

• Center section
• Two deployed wings

– Secondary Mirror
– Aft Optics Assembly
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Analysis Technique Objective
• Observatory designed to allow required level of 

performance for very long exposures
– Low-expansion materials
– Minimize thermal gradients
– Wavefront sensing and control
– Traditional STOP analysis examines basic design

• Sought a fast integrated modeling procedure
– Achieve sufficiently accurate error estimates without 

either NASTRAN statics or ray-tracing runs
– Allow performance of Monte Carlo simulations or 

consideration of large trade spaces
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Sensitivity Coefficients
• MSC/NASTRAN Optimization approximates response 

quantities by a truncated Taylor Series expansion
– Sensitivity coefficient is the constant of the Taylor series linear term
– Sensitivity is therefore the first step in optimization

• Finds partials of response quantities, ri, wrt design variable, xi
by means of chain rule, 
– First term is unity since we are studying displacements
– Second term comes from static equilibrium equation,

1: Equations, example from NASTRAN optimization documentation
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Sensitivity Analysis Example

A
Design Variables

• Sensitivity coefficients always computed for the design goal and constraints 
– Volume 

– V = B H L
– V ≈ B0H0L + H0L •∆B + B0L •∆H + 0 •∆A 

– Bending stress
– σbend = Mc/I = 6PL/BH2

− σbend ≈ 6PL/B0H0
2 - 6PL/(B0H0)2 •∆B - 12 PL/B0H0

3 •∆H + 0 •∆A 
– Limit on thermal deflection

– δTherm = AL(T2-T1)
– δTherm ≈ A0L(T2-T1) + 0 •∆B + 0 •∆H + L(T2-T1) •∆A 
– Can not make CTE(T) a design variables
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Linear Optical Modeling
• Joe Howard creates optical sensitivity array

– Introduces a small motion for each optical DOF
• Performs a ray trace
• Recovers the OPD at the exit pupil

– 3-D array of size 100 x 100 x 6n
• This work considered only rigid optics
• Exported to MATLAB

• Disturbed optical performance calculated
– Motion of each optical DOF generated in some way
– Array elements multiplied by calculated motion
– Scaled arrays summed

• Generate a single 100x100 OPD map
• Mean despace and centroid-drift removed
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Material CTE Analysis

• Monte Carlo analysis used to establish probabilistic 
criteria for metering structure CTE
– Determine critical parts of the metering structure
– Create design variables for each selected area
– Create relationships to the selected properties
– Create design constraints of optical DOF
– Select optimization via DSAPRT(END=SENS)=ALL

• Read coefficients into MATLAB
– Calculate WFE using linear optics
– Repeated these calculations thousands of times
– Calculate mean and standard deviations of optical 

performance figure of merit (OPD)
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Analytical Judgments

• Used contractor-delivered structural math models
– Constrained kinematically

• Applied uniform delta-T to entire model
– Magnitude comparable to the slew temperature changes

– Gradients from actual temperature sets would have complicated 
results interpretation

• Highest coefficients would have come from locations experiencing
the greatest temperature changes during the slew

• Would have been slew-case dependent
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Structural Details
PM Support Structure PM Backplane Secondary Tower Assembly

Aft Optics Assembly
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Random CTE Generation
• Generated Gaussian random number 

– µ = 0, σ = 1
– Multiplied by the 1 - σ value of CTE for particular trial

• Representing variations in manufacturing process control
– Filtered using a trial-specific bandpass

• Repeat process if value exceeds limits
– Add in nominal CTE value

• Representing variations in OTE temp. from nominal T.

• Generated random number between –1 and 1
– Uniform distribution
– Multiplied by a test uncertainty factor
– Added to the value from previous step
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Analysis Cases
1 Stnd. Bandpass Test Reject Mean 

Deviation Filter Uncertainty Rate CTE
Case (ppb/K) (ppb/K) (ppb/K) (%) (ppb/K) Comments
1 σ ± ω ± β 20 α Baseline Case
2 .78σ ± ω ± β 10 α Narrow CTE Spread
3 1.9σ ± ω ± β 50 α Wide CTE Spread 
4 σ ± .40ω ± β 61 α Tighter CTE control
5 σ ± 2.0ω ± β 1.4 α Looser CTE control 
6 σ ± ω ± .50β 20 α Better CTE testing
7 σ ± ω ± 2.0β 20 α Worse CTE testing
8 σ ± ω ± β 20 1.15α 35K Nominal Temp 
9 σ ± ω ± β 20 .805α 45K Nominal Temp

• Cases should be considered as four pairs to be 
compared to the baseline
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Mean CTE Convergence
(All Trials)
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Mean Displacement Convergence
(All Trials)
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Design Variable Error Contributions
(Nominal Case)
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Conclusions
• Detailed multi-disciplinary analyses can be augmented 

with sensitivity coefficient-based analysis
• NASTRAN models can generate linear estimations of the 

effect of changes in structural parameters
• Optical analysis tools can create similar linear models of 

wavefront error
• Eliminates thousands of NASTRAN model runs and equal 

numbers of ray-tracing runs
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