Effective Modeling of Thin-Film Shells Exhibiting Wrinkling Deformations

David W. Sleight, Alex Tessler, and John T. Wang
Analytical and Computational Methods Branch
NASA Langley Research Center

David.W.Sleight@nasa.gov

FEMCI Workshop 2003
May 7-8, 2003
Outline

- Motivation
- Objectives
- Shell modeling strategies
- Numerical and experimental results
- Conclusions
Wrinkling in Solar Sails

- Wrinkling
 - Large displacements
 - Low strain energy
 - Rigid-body motion

- Detrimental effects
 - Performance
 - Stability
 - Maneuverability
 - Local heating

- Testing difficult
 - Large size
 - Gravity
 - Aerodynamics
Objectives

- Explore nonlinear shell modeling of thin-film membranes using ABAQUS
- Achieve high-fidelity wrinkling predictions
- Perform experimental validation
Shell Modeling

- **Characteristics**
 - Bending and membrane coupling effects included
 - Geometrically nonlinear shell deformations

- **Capabilities**
 - Wrinkling amplitude, wave length and shape
 - Membrane-to-bending coupling using imperfections
 - Buckling modes (Wong & Pellegrino, 2002)
 - Trigonometric functions (Lee & Lee, 2002)
Shell Analysis Issues

- **Wrinkling initiation issues**
 - Shear locking for thin shell elements
 - Membrane-to-bending coupling in initially flat membranes
 - Numerical ill-conditioning of tangent stiffness matrix
 - Sensitivity to modeling, loading, and B.C.’s

- **Modeling and computational strategies**
 - Employ robust shell elements
 - Introduce computationally efficient, unbiased random imperfections (w_0)
 - Add fictitious viscous forces to circumvent numerical ill-conditioning
 - Remodel sharp corners and concentrated loads
Numerical and Experimental Results

- **Square thin-film membranes**
 - Shear loaded
 - Tension loaded
ABAQUS Shell Modeling

- Basic modeling strategies
 - Use robust, locking-free, shell element
 - Add fictitious viscous forces to circumvent numerical ill-conditioning (STABILIZE)
 - Introduce small, unbiased, random transverse imperfections to enable membrane-to-bending coupling

\[
F_v = c M^A v \\
P - I - F_v = 0 \\
w_0 = \alpha \cdot \delta_{\text{random}} \cdot h \\
\delta_{\text{random}} \equiv \delta \in [-1, 1] \\
\alpha = 0.10
\]
Shear Loaded Thin-Film Membrane

\[\Delta = 1 \text{ mm} \]

Mylar® Polyester Film Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge length, (a) (mm)</td>
<td>229</td>
</tr>
<tr>
<td>Thickness, (h) (mm)</td>
<td>0.0762</td>
</tr>
<tr>
<td>Elastic modulus, (E) (N/mm²)</td>
<td>3790</td>
</tr>
<tr>
<td>Poisson’s ratio, (\nu)</td>
<td>0.38</td>
</tr>
</tbody>
</table>

- Tested at NASA LaRC
- Photogrammetry
Experiment vs. Simulation

Experimental Observations using Photogrammetry

ABAQUS Nonlinear Shell FEA
Experiment vs. Simulation

- Random imperfections imposed
- Actual initial imperfections not used

Experimental Observations using Photogrammetry

ABAQUS Nonlinear Shell FEA
Tension Loaded Thin-Film Membrane

KAPTON® Type HN Film Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge length, a (mm)</td>
<td>500</td>
</tr>
<tr>
<td>Thickness, h (mm)</td>
<td>0.0254</td>
</tr>
<tr>
<td>Young’s modulus, E (N/mm2)</td>
<td>2590</td>
</tr>
<tr>
<td>Poisson’s ratio, ν</td>
<td>0.34</td>
</tr>
</tbody>
</table>

Simulation from Corner Point Loads

Corner region
- Quad elements collapsed into triangles
- Severe stress concentration

- Deflection
 \[-0.10 \leq w_{FEA} \leq 0.10\]

- **Von Mises Stress**

 - \(\sigma (N/mm^2)\)
 - \(+31.74\)
 - \(+29.11\)
 - \(+26.48\)
 - \(+23.86\)
 - \(+21.23\)
 - \(+18.60\)
 - \(+15.97\)
 - \(+13.35\)
 - \(+10.72\)
 - \(+ 8.09\)
 - \(+ 5.46\)
 - \(+ 2.84\)
 - \(+ 0.21\)
Shell Modeling with Truncated Corners

- Basic modeling strategies
- Additional enhancements
 - Remove sharp corners where loads applied
 - Represent point loads as distributed tractions
Truncated Corners Model

Corner region
- Sharp corners removed
- Severe concentration reduced
- Wrinkles develop

Von Mises Stress

Deflection

<table>
<thead>
<tr>
<th>σ (N/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+18.96</td>
</tr>
<tr>
<td>+17.74</td>
</tr>
<tr>
<td>+15.93</td>
</tr>
<tr>
<td>+14.27</td>
</tr>
<tr>
<td>+12.71</td>
</tr>
<tr>
<td>+11.15</td>
</tr>
<tr>
<td>+ 9.58</td>
</tr>
<tr>
<td>+ 8.02</td>
</tr>
<tr>
<td>+ 6.46</td>
</tr>
<tr>
<td>+ 4.90</td>
</tr>
<tr>
<td>+ 3.33</td>
</tr>
<tr>
<td>+ 1.77</td>
</tr>
<tr>
<td>+ 0.21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>w (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0.34</td>
</tr>
<tr>
<td>+0.24</td>
</tr>
<tr>
<td>+0.14</td>
</tr>
<tr>
<td>+0.04</td>
</tr>
<tr>
<td>-0.06</td>
</tr>
<tr>
<td>-0.16</td>
</tr>
<tr>
<td>-0.26</td>
</tr>
<tr>
<td>-0.36</td>
</tr>
<tr>
<td>-0.46</td>
</tr>
<tr>
<td>-0.56</td>
</tr>
<tr>
<td>-0.66</td>
</tr>
<tr>
<td>-0.76</td>
</tr>
<tr>
<td>-0.86</td>
</tr>
</tbody>
</table>
Experiment vs. Simulation

Experimental Results (J. Blandino, 2002)

- Initial imperfections present
- Non-symmetric wrinkle pattern

ABAQUS Nonlinear Shell FEA

- Random imperfections applied
- Symmetric wrinkle pattern

Random imperfections applied
Symmetric wrinkle pattern
Conclusions

- Large displacement shell modeling of thin-film membranes to achieve wrinkling deformations
 - Robust shell elements free of shear locking
 - Fictitious viscous forces to circumvent numerical ill-conditioning
 - Unbiased random transverse imperfections to enable membrane-to-bending coupling
 - Improved modeling of sharp corner regions subjected to tension loads

- Numerical examples and experimental validation
 - Square membranes loaded in shear and tension
 - Numerical results compared favorably with experiments
Conclusions (cont.)

- Remaining Issues
 - Element technology
 - Nonlinear analysis convergence and viscous-force stabilization
 - Adaptive mesh refinement / robust error estimation
 - Sensitivity to boundary conditions and applied loading