

Validation of Base-Driven Modal Survey Capability

- PI: Scott Gordon/Code 542
- Co-PI's: Brian Ross/Code 549 Dan Worth/Code 549 Dan Kaufman/Code 542

DDF Proposal - Overview

• Purpose: To prove feasibility of Base-Driven Modal Survey as alternate technique to Fixed-Base Modal Survey for extracting modal parameters

• Approach:

- 1. Perform standard modal survey/correlation on representative test article
- 2. Perform base-driven modal survey on same test article
- 3. Compare results/develop guidelines

• Rationale:

- Correlated finite element models required to accurately predict flight loads
- Base-driven modal survey is a cost-effective means for extracting modal data necessary to correlate finite element models
- Currently fixed-base modal survey is only accepted way of extracting modal parameters (frequency, mode shapes, damping)
- Data does not exist to prove viability of base-driven modal survey

Base-Driven Modal

1-2 weeks test effort (15 - 20 K)Dedicated modal test facility

Need for Model Correlation

systems

Analysis

٠

- Design/fab/analysis of mass mockups
- Pre-test analysis to ensure that test config = flight config

Base-Driven Modal Survey Approach ٠

- Testing performed as part of standard vibration testing (sine/random)
- Modal extraction performed on shaker table dedicated test facility not required

Improved flight loads predictions \rightarrow More efficient structures/mechanical

Requirement for test verified models for Verification Coupled Loads

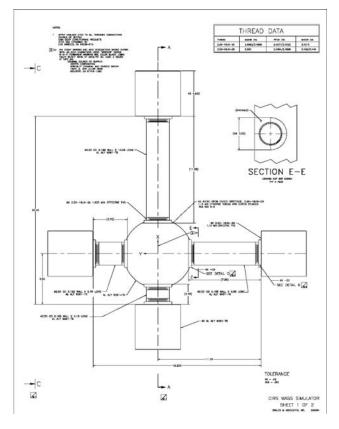
Current Approach – Dedicated Fixed-Base Modal Survey Test

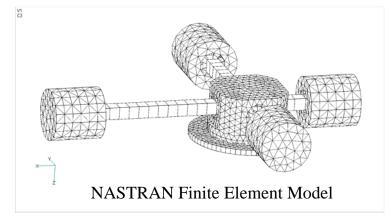
- Hardware tested in flight configuration, at flight input levels
- Applicabililty
 - Component/subsystems with few modes to be correlated
 - Observatory level testing

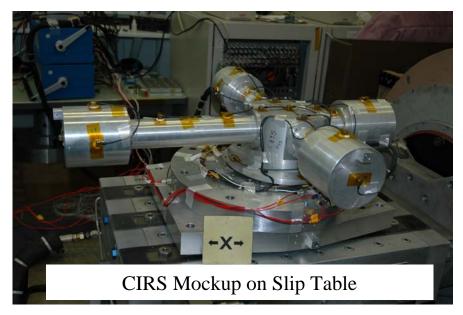
MODAL SURVEY TEST FACILITY

Goddard Space Flight Center **Base-Driven vs Fixed-Base Modal**

Mechanical Systems Analysis Branch/Code 542

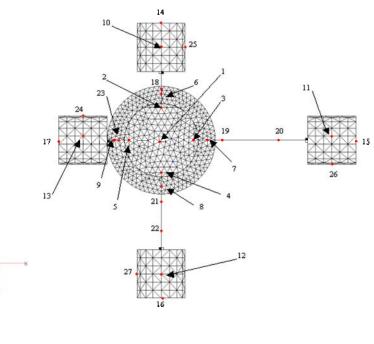


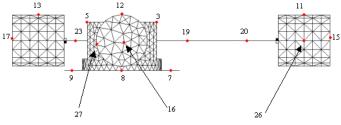



DDF Test Article

- Cassini Infared Spectrometer (CIRS) Mass Mockup
- Weight: 57 lbs
- Dimensions: 30" x 30" x 6"

Base-Driven Modal





Mechanical Systems Analysis Branch/Code 542

Goddard Space Flight Center Test Instrumentation

١o	Grid ID	X Coord*	Y Coord*	Z Coord*	Description
1	1687	1.183	2.181	-4.6	Centered on top of hub
2	1567	0	-3.317	-4.6	On top of hub at the outer edge in the -y dir
3	2138	3.317	0	-4.6	On top of hub at the outer edge in the +x dir
4	1587	0	3.317	-4.6	On top of hub at the outer edge in the +y dir
5	2246	-3.317	0	-4.6	On top of hub at the outer edge in the -x dir
6	2970	0	-4.75	0	On base flange along 9.5in diam circle (bolt hole location circle) in the -y dir
7	2951	4.75	0	0	On base flange along 9.5in diam circle (bolt hole location circle) in the +x dir
8	3015	0	4.75	0	On base flange along 9.5in diam circle (bolt hole location circle) in the +y dir
9	2981	-4.75	0	0	On base flange along 9.5in diam circle (bolt hole location circle) in the -x dir
10	823	0	-9.482	-5.315	Centered on top of cylindrical mass in the -y dir
11	201	17.362	-0.428	-5.278	Centered on top of cylindrical mass in the +x dir
12	555	0	13.641	-5.315	Centered on top of cylindrical mass in the +y dir
13	324	-7.962	-0.428	-5.278	Centered on top of cylindrical mass in the -x dir
14	919	-0.0037	-11.947	-2.840	Centered on outer face of cylindrical mass in the -y dir
15	101	19.827	0.1517	-3.145	Centered on outer face of cylindrical mass in the +x dir
16	637	0.225	16.107	-2.607	Centered on outer face of cylindrical mass in the +y dir
17	371	-10.427	0.243	-3.075	Centered on outer face of cylindrical mass in the -x dir
18	2767	0	-5.166	-2.85	Midway along the arm (tube) in the -y dir
19	2755	6.212	0	-2.85	Symmetrically spaced 1/3 the length of the arm in the +x dir
20	2761	12.001	0	-2.85	Symmetrically spaced 2/3 the length of the arm in the +x dir
21	2746	0	6.264	-2.85	Symmetrically spaced 1/3 the length of the arm in the -y dir
22	2749	0	9.212	-2.85	Symmetrically spaced 2/3 the length of the arm in the -y dir
23	2771	-4.407	0	-2.85	Midway along the arm (tube) in the -x dir
24	286	-7.96162	-2.465	-2.85	Centered on the side of cylindrical mass in the -x dir
25	1011	2.42755	-9.48162	-2.42196	Centered on the side of cylindrical mass in the -y dir
26	32	17.3616	-2.465	-2.85	Centered on the side of cylindrical mass in the +x dir
27	744	2.42755	13.6416	-2.42196	Centered on the side of cylindrical mass in the +y dir
ote:	the or	rigin is loc	ated at th	e center o	of the bottom of the hub where it interfaces with the base

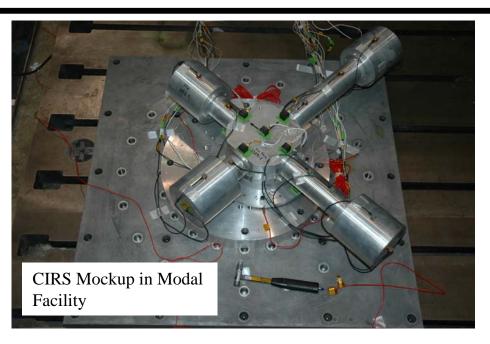
Base-Driven Modal

Test vs Analysis Comparison

- The finite element model is considered test correlated if for significant modes (>10% modal effective mass) the following requirements are met:
 - Analytical frequencies are within 5% of the measured test frequencies
 - Cross-orthogonality between the test mode shapes and the analytical predicted mode shapes show >0.90 on the diagonal and <0.10 on the off-diagonal
- Cross-Orthogonality is defined as

$$[X - Orth] = \{\phi_{AA}\}^{T} [M_{AA}] \{\phi_{Test}\}$$

where


$$\phi_{AA} = \text{Analytical Modeshapes (Nresp x Modes)}$$
$$\begin{bmatrix} M_{AA} \end{bmatrix} = \text{Analytical Mass Matrix (Nresp x Nresp)}$$
$$\phi_{Test} = \text{Modeshapes extracted from Test (Nresp x Modes)}$$
$$\begin{bmatrix} X-\text{Orth} \end{bmatrix} = \text{Cross - orthogonality Matrix (Modes x Modes)}$$

Base-Driven Modal

Correlated CIRS FEM Using Traditional Modal Survey

Frequency Comparison							
Modal							
Survey	Analysis						
(Hz)	(Hz)	% Diff					
84.87	84.88	0.004					
90.33	90.35	0.030					
121.17	120.62	0.451					
132.89	131.46	1.072					
211.61	210.37	0.589					
226.18	225.63	0.246					
288.96	287.16	0.623					
335.75	334.03	0.513					

Cross-Orthogonality

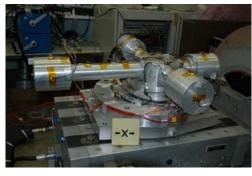
		CIRS FEM								
	Freq(Hz)	84.88	90.35	120.62	131.46	210.37	225.63	287.16	334.03	
Modal Survey	84.87	-0.99	-0.020	0.022	-0.023	0.007	0.025	-0.032	0.003	
	90.33	-0.058	-0.996	0.022	0.046	0.004	0.024	-0.002	0.019	
	121.17	0.018	0.028	0.984	0.060	0.122	-0.023	0.004	0.030	
	132.89	0.031	-0.049	-0.031	-0.995	-0.008	0.032	0.002	0.026	
	211.61	0.002	0.013	0.115	-0.001	-0.965	0.214	0.063	0.097	
	226.18	-0.024	-0.021	-0.002	-0.021	-0.157	-0.955	-0.094	0.105	
	288.96	-0.043	0.003	-0.014	0.017	0.029	-0.117	0.848	-0.040	
	335.75	-0.003	0.002	0.059	-0.015	-0.097	-0.039	0.051	-0.785	

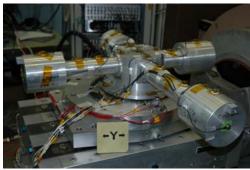
Base-Driven Modal

Vibration Test Runs

Table 1.	Swept Sine	Vibration Runs	(Each Axis)
----------	------------	-----------------------	-------------

Frequency	Input Level	Sweep Rate
(Hz)	(g)	(oct/min)
50 - 1000	0.10	4.0, 2.0, 1.0
50 - 1000	0.25	4.0
50 - 1000	0.50	4.0*
50 - 200	0.10	1.0 Hz/sec

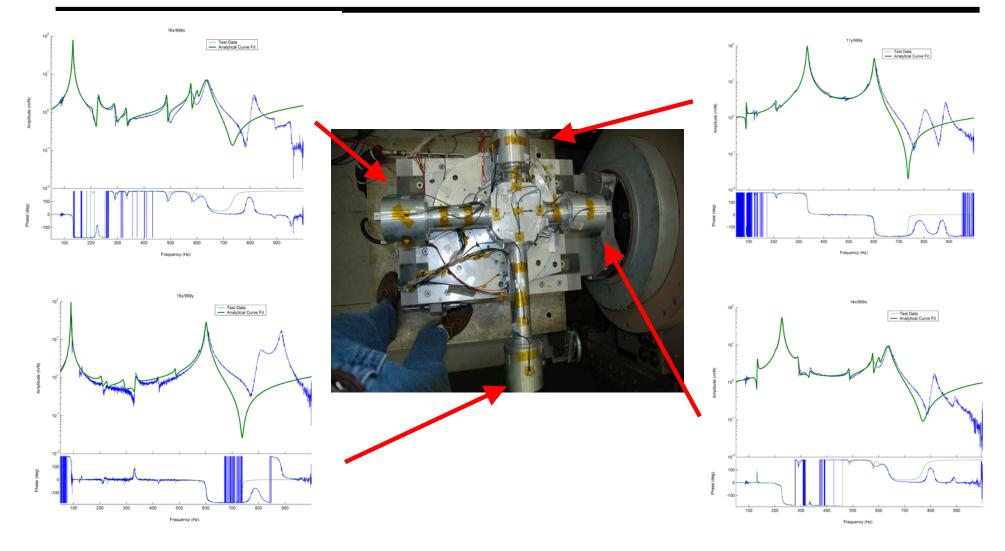

*Run shall be performed twice using 1 and 2 control channels respectively


Table 3. Random Vibration Runs (Each Axis)

Frequency (Hz)	Input Level (g2/Hz)	Duration (Sec)
50 - 1000	0.001	120
50 - 1000	0.01	120
50 - 1000	0.04	120*

*Run shall be performed twice using 1 and 2 control channels respectively

Total Vibration Test Runs = 30 (10 per Axis)



Modal Extraction Using Vibration Data

Base-Driven Modal

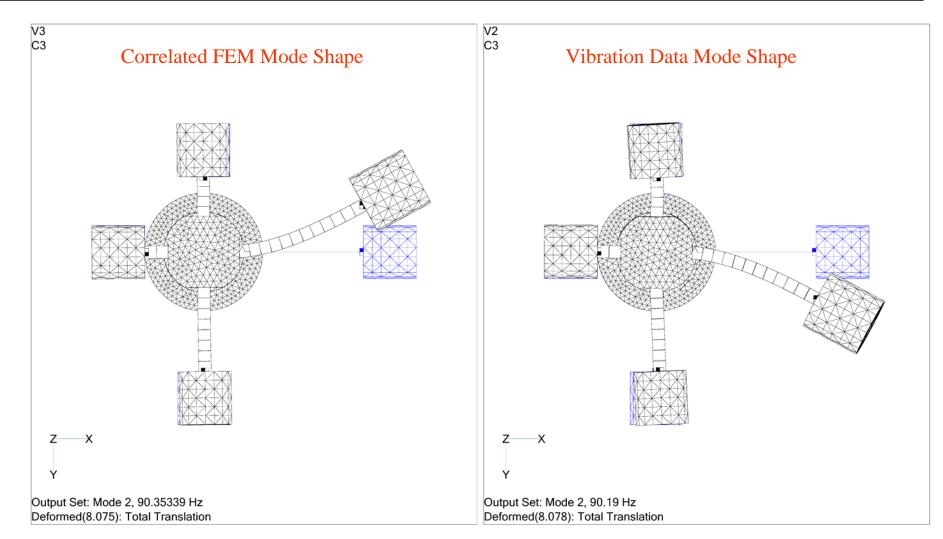
Mechanical Systems Analysis Branch/Code 542

Goddard Space Flight Center

Cross-Orthogonality Results for 0.1g Sweep @ 4oct/min

			Vibration Test Data							
	Freq (Hz)	81.38	90.19	132.34	206.25	226.95	290.41	333.74		
	84.88	0.840	-0.024	-0.029	-0.025	-0.03192	0.008	0.000		
Σ	90.35	0.323	1.002	0.050	-0.011	-0.028	0.048	0.012		
ШЦ	120.62	-0.101	-0.024	0.049	-0.041	0.018	0.079	0.027		
lated	131.46	-0.049	0.051	-1.012	-0.009	-0.033	0.037	0.025		
	210.37	-0.013	-0.009	-0.004	0.957	-0.156	-0.031	0.075		
orre	225.63	0.058	0.024	-0.024	0.222	1.006	-0.109	0.074		
ပိ	287.16	0.045	0.000	0.016	-0.050	0.102	-0.928	-0.045		
	334.03	-0.045	0.002	-0.017	-0.037	0.036	-0.139	-0.664		

Freque	ncy Compa	_		
Correlated	Sine			
FEM	Sweep			
(Hz)	(Hz)	%Diff		Mode not
84.88	81.38	4.1%		identified
90.35	90.19	0.2%		due to
120.62 (\mathbf{b}	rocking of
131.46	132.34	-0.7%	ſ	shaker
210.37	206.25	2.0%		head (See
225.63	226.95	-0.6%		Page 12)
287.16	290.41	-1.1%		
334.03	333.74	0.1%		



Mechanical Systems Analysis Branch/Code 542

Goddard Space Flight Center

Comparison of Vibration Data with Correlated FEM

Base-Driven Modal

Issues/Problems

- Only able to correlate first 8 modes of CIRS mockup using standard modal survey techniques because of limitations with test setup
 - Difficulty exciting rotational modes
 - Insufficient time to troubleshoot problems.
- Rocking of shaker head during thrust axis vibration test resulted in poor quality data for the Z-axis vibration test
 - Need to examine other data sets to see if rocking is consistent across input types and levels
 - Need to examine alternate means of processing data to improve quality
- Schedule constraints in getting access to modal facility and shaker facility limited time available to process data
 - All vibration runs complete and data archived
 - Only 0.1g sweep @ 4 oct/min has been processed to date

Summary/Conclusion

- FEM model of the CIRS mockup created
- CIRS mockup FEM correlated using standard Fixed-Base modal survey techniques
- Entire Suite of planned vibration tests have been completed
- Test data from the 0.1g @ 4oct/min test run has been processed and modal parameters successfully extracted
- Excellent correlation for lateral (X & Y) modes. Poor correlation for thrust (Z)
- Two issues uncovered that must be explored further
 - Higher order modes not well correlated using either fixed-base or base-driven data
 - Thrust axis (Z) rocking during vibration resulted in poor quality data
- Additional Work Planned (Under Internal AETD Funding)
 - Process all acquired test runs to determine how different vibration parameters effect quality of data
 - Review vertical axis data across different runs to see if rocking behavior is consistent
 - Process data using different input references to see if quality of data can be improved

• <u>DDF Investigation showed feasibility of using base-driven</u> <u>vibration data to extract modal parameters.</u>