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Hopper Mission to Moon/Mar Rover Mission to Mar

1. One of the scientific goals of these missions is to search for water and other 
essential materials for human survivability on these planets. 

2. A simple, light weight, and low power instrument called Multi-Wave 
Dielectrometer (MWD) if integrated with Rover/Hopper will help in
(a) characterizing electrical properties of subsurface Moon/Mar’s soil,
(b) understanding geological evolution of subsurface of these planets

without digging .
In this presentation an attempt is made to demonstrate  use of 
Finite Element Procedure to analyze and design proposed 
MWD instrument 

Introduction:
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Operational Principle of  MWD

Data Acquisition
• Measure mutual capacitances

between all combinations of
electrodes.
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1. Assume a physical model for 
stratified medium

2. Using FEM modeling, mutual 
capacitances are estimated as
a function of dielectric profile.

3. Define error function as

4. Using optimization procedure based
on gradient based method, Genetic
Algorithm (GA), or Neural Network

(NN), error is minimized to arrive at  
a probable dielectric profile.
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Finite Element Procedure for Estimation of Mutual Capacitances:

Ground Shield

#1 #2 #3 #4

Homogeneous/In-homogeneous
medium

How are the capacitances 
defined? 
Let                   and          be the charges 
collected on electrodes #1,#2, #3, and #4
when a low frequency voltage       is 
applied to electrode #1 and other 
electrodes are grounded.  Then 
capacitances are defined as 

,             ,            ,           

Other capacitances are similarly defined.  
In general capacitance

is defined as                

where the charge collected       is given by 

being electrical potential

Conclusion:
Mutual capacitances can be estimated by 
solving Laplace’s equation
subjected to proper boundary condition 

dictated by the geometry of MWD 
instrument.

131211 ,, QQQ 14Q

1V

1

11
11 V

QC =
1

12
12 V

QC =
1

13
13 V

QC =
1

14
14 V

QC =

ijC
i

ij
ij V

Q
C =

∫ •∇−=
jc

iij cdyxQ vφε ),(
ijQ

),( yxiφ

0),(2 =∇ yxiφ



Solution of Laplace Equation Using FEM Method

Laplace Equation:                                               (1)

Electric Field Distribution:                                    (2)

Electric energy stored in the structure:

(3)

For 2-D case:  divide the region into triangles (as shown below).  
If                  are the nodal voltages
then  electric potential  and field over 
the triangle can be written as

Electric energy stored over the triangle: 
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Stored energy over the triangle:

where 

If there are N triangles, total stored energy:

The nodal voltages are obtained
by minimizing the total energy. 
This minimization yields following
matrix equation which can be
solved for nodal potentials. 
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Input Electrode Geometry and 
physical model for medium

Using Commercial CAD Package
Discretize Geometry

Assume Initial Values for 
electrical properties of medium
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Numerical Validation:

Example 1:
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Computed Capacitances
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Inversion/Extraction Procedure: 
Can we extract a dielectric profile of medium if the capacitances
between electrodes embedded in the medium are known?

Error Plot
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Example 2:
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Error Plot
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Example 3:
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Error Plot
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Error Plot
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Example 4:

1. Assume that dielectric constants
of layer #1,#3, and #4 are known (=1.0)

2. With er2 = 3.5 generate mutual capacitance 
data

3. Use the procedure to estimate dielectric
constant of layer #2
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Conclusions:

1. 2-Dimensional Finite Element Method has been successfully employed
to analyze and design multi-wave dielectrometer to estimate dielectric
constants of inhomogeneous medium.

2. When the electrodes are evenly distributed in a medium under test
the multi-wave dielectrometer predicts the medium constants with 
accuracy greater than 97%

3. When the electrodes are distributed on a plane surface, the region 
closer to the electrodes are predicted with more accuracy compared
to the regions away from the electrodes.

Future Work:
1. In the present formulation dielectrometer boundary was enclosed in a

closed metallic ground shield.  However, in a real situation,  ground
shielding is only at the top.  We would like to modify our formulation
to take into account actual geometry of MWD

2. The real MWD is a 3-Dimenional device.  Our ultimate goal is to develop
3-D FEM model to analyze these devices.


