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Introduction:

Hopper Mission to Moon/Mar Rover Mission to Mar

1. One of the scientific goals of these missions is to search for water and other
essential materials for human survivability on these planets.

2. A simple, light weight, and low power instrument called Multi-Wave
Dielectrometer (MWD) if integrated with Rover/Hopper will help in
(a) characterizing electrical properties of subsurface Moon/Mar’s sail,
(b) understanding geological evolution of subsurface of these planets

without digging .

In this presentation an attempt is made to demonstrate use of

Finite Element Procedure to analyze and design proposed

MWD instrument



Multi-Wave Dielectrometer

Schematic Diagram of MWD
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Operational Principle of MWD

Data Acquisition
. Measure mutual capacitances
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between all combinations of
electrodes.
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1. Assume a physical model for
stratified medium
2. Using FEM modeling, mutual

capacitances are estimated as — E—
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4. Using optimization prbéeditire based FEM Modeling
on gradient based method, Genetic
Algorithm (GA), or Neural Network
(NN), error is minimized to arrive at

a probable dielectric profile.



Finite Element Procedure for Estimation of Mutual Capacitances:

How are the capacitances

defined?

Let Q..Q..Q: and Qu be the charges
collected on electrodes #1,#2, #3, and #4
when a low frequency voltageV ; is
applied to electrode #1 and other
electrodes are grounded. Then
capacitances are defined as
e Qe _Q ¢ _Qu o _Qu
11 V’1 12 \/’1 13 ’V1 14 V1
Other capacitances are similarly defined.
In general capacitance Q.
C, isdefinedas C,= V—”
where the charge collected Qij IS given by
s =—(x, V)V edc

Cj

¢ (X, y) being electrical potential

Conclusion:

Mutual capacitances can be estimated by
solving Laplace’s equation  v?4 (x,y) =0
subjected to proper boundary condition
dictated by the geometry of MWD
instrument.

Ground Shield

#1 #2 #3 #4

Homogeneous/In-homogeneous
medium



Solution of Laplace Equation Using FEM Method
Laplace Equation: Vg (x y) =0 (1)
Electric Field Distribution: XN =VALY) 2)

Electric energy stored in the structure:
1 - 2 3
W :Eljg(x, y)\E(x, y)\ ds (3)
For 2-D case: divide the region into triangles (as shown below).

If e, e, e, are the nodal voltages
then electric potential and field over

the triangle can be written as

#3

3 :
¢ ° = Z eei o i (X1 y) " Triatlzgular Element e

i=1
3
E® = — e.Va.
Izzl el | 1 3 3
Electric energy stored over the triangle: W, =52 > z& [[Vea evadsie,

i=l j=1 jth



Stored energy over the triangle:

Clel Clez Clea Ce1 £
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If there are N triangles, total stored energy:

i 2
i{Cue] +C12€1€22' """" +Cuyeiey J+ The nodal voltages are obtained
1 82{C216261+szez o+ Cop 88y }+ by minimizing the total energy.
W ZE 53{C319381+C326392 ot Gy Ba8y }"' This minimization ylelds foIIowing
...................................................... matrix equation which can be
£x Cui€n8 + Cp8y€, + ..ot C € | solved for nodal potentials.
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Mutual Capacitance: '



Flow Chart for Dielectric Profile Estimation

Input Electrode Geometry and
physical model for medium
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Numerical Validation:

Example 1:
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All dimensions in cm

FEM Model



Comparison of computed values of capacitances with

earlier published data forward problem
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Inversion/Extraction Procedure:
Can we extract a dielectric profile of medium if the capacitances
between electrodes embedded in the medium are known?
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Electrodes
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Example 3:

Electrodes Ground Shield
[ a
1 Medium z \
ero = 1.0 T T DiekedricRas
P em Be e o
0 D m W @ m e
\ i s I s [ N £
< 10.0cm >

Mean Square Error Plot

Mean Square Error
A~ O

0\\\\\\\\\
1 3 5 7 9 11 13 15 17 19

Number of Iteration

—e— Seriesl

Percentage Error
In estimation= 9.5%

Percentage Error
In estimation= 24%

Electrode Width = 1.0 cm
Dielectric Rods = 0.5cm x 0.1 cm

Estimated Dielectric Constant

&
: /
§ 4 —e— Seriesl
2 34 —m— Series2
5 2] /
3 ;L

o —— T T T

1 3 5 7 9 11 13 15 17 19 21

Number of Iteration

Estimation of Dielectric Constant

] At

—e— Seriesl

—=— Series2

47‘/’*‘”*
21

O+——F——7 77T T T T T T T T T
1 3 5 7 9 11 13 15 17 19 21

Number of Iteration

Dielectric Constant




Ground Shield
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Error Plot

Dielectric Constant of Third Layer

(5]
S
> —e— O€rles
o 600
wn
g 400 Error Plot
(5]
= 200
0 &
1 3 5 7 9 11 1%
Number ¢ §
1 3 5 7 9 11 131517 19 21 23 25
Number of Iteration
Dielectric Constant of First Layer

12
E 10
c 8
8 5 —e— Seriesl
2 —=— Series?2
o 4
(3]
T 2
[a}

0

1 3 5 7 9 11 13 15 17 19 21 23 25
Number of Iterations

=

©

»

<

3 —e— Seriesl
2 —»— Series2
©

(5]

<

a

1 3 5 7 9 11 13 15 17 19 21 23 25
Number of Iterations
Dielectric Constant of Second Layer

6
£5
2 4
8 —e— Series1
(8] 3 .
= —m— Series2
o 2
Q
Q1
a

0

1 3 5 7

9 11 13 15 17 19 21 23 25

Number of Iterations




Example 4:

1. Assume that dielectric constants
of layer #1,#3, and #4 are known (=1.0)

2. With er2 = 3.5 generate mutual capacitance
data

3. Use the procedure to estimate dielectric
constant of layer #2




1. Assume that dielectric constants

of layer #1,#2, and #4 are known (=1.0)

2. With er3 = 3.5 generate mutual capacitance
data

3. Use the procedure to estimate dielectric

constant of layer #3
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Conclusions:

1. 2-Dimensional Finite Element Method has been successfully employed

to analyze and design multi-wave dielectrometer to estimate dielectric
constants of inhomogeneous medium.

2. When the electrodes are evenly distributed in a medium under test

the multi-wave dielectrometer predicts the medium constants with
accuracy greater than 97%

3. When the electrodes are distributed on a plane surface, the region

closer to the electrodes are predicted with more accuracy compared
to the regions away from the electrodes.

Future Work:

1. Inthe present formulation dielectrometer boundary was enclosed in a
closed metallic ground shield. However, in a real situation, ground

shielding is only at the top. We would like to modify our formulation
to take into account actual geometry of MWD

2. The real MWD is a 3-Dimenional device. Our ultimate goal is to develop
3-D FEM model to analyze these devices.



